

Marc Lankhorst et al.

Enterprise Architecture at Work

Marc Lankhorst et al.

123

Enterprise Architecture
at Work

With 167 Figures and 12 Tables

Modelling, Communication, and Analysis

AA_fullcolourU.eps
ABN AMRO full-colour for uncoated paper
Width shield: 20 mm
Overlap: 0,05 mm

Marc Lankhorst
Telematica Instituut
P.O. Box 589
7500 AN Enschede
The Netherlands
e-mail: marc.lankhorst@telin.nl

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Typesetting: by the Authors
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Printed on acid-free paper 33/3142/YL - 5 4 3 2 1 0

Colour figures sponsored by ABN AMRO

Library of Congress Control Number: 2005924300

ACM Computing Classification (1998): H.1, D.2.11, J.1

ISBN-10 3-540-24371-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-24371-7 Springer Berlin Heidelberg New York

Foreword

‘Architecture’, in a broad sense, is the synergy of art and science in de-
signing complex structures, such that functionality and complexity are

controlled. The notion of architecture is used in a wide range of domains,

from town planning to building and construction, and from computer
hardware to information systems, each being characterised by the types of

‘structures’ or ‘systems’ being designed. However, we can recognise some

common concerns in all these approaches.

To begin with, architecture, and hence the architect, is concerned with
understanding and defining the relationship between the users of the sys-

tem and the system being designed itself. Based on a thorough under-

standing of this relationship, the architect defines and refines the essence
of the system, i.e., its structure, behaviour, and other properties.

This representation of the system’s essence, also called the ‘architec-

ture’ of the system, forms the basis for analysis, optimisation, and valida-

tion and is the starting point for the further design, implementation, and
construction of that system. The resulting artifacts, be they buildings or in-

formation systems, naturally have to conform to the original design crite-

ria. The definition of the architecture is the input for verifying this.
 During this process, the architect needs to communicate with all stake-

holders of the system, ranging from clients and users to those who build

and maintain the resulting system. The architect needs to balance all their
needs and constraints to arrive at a feasible and acceptable design.

Fulfilling these needs confronts the methodology for defining and using

architectures with demanding requirements. These can only be met if the

architects have an appropriate way of specifying architectures and a set of
design and structuring techniques at their disposal, supported by the right

tools. In building and construction, such techniques and tools have a his-

tory over millennia. In information systems and enterprise architecture,
though, they are just arising.

Important for an architecture description language is that the properties

of the system can be represented in their bare essence without forcing the
architect to include irrelevant detail. This means that the description lan-

guage must be defined at the appropriate abstraction level.

VI Foreword

If the architecture is concerned with the relationship between an enter-

prise and its IT support, the architect should be capable of expressing the

structure, behaviour, and coherence of both the business processes and the
IT support, such that one can use these specifications to get a thorough un-

derstanding of the architecture, to optimise it according to specific busi-

ness goals, and to develop a strategy for introducing improvements in the
current situation. This implies that the architecture description language

should embrace easily understandable human notions of business pro-

cesses and their IT support, far away from low-level implementation is-

sues. It requires a level of comprehensibility of the description language by
a broader audience than just the few specialists that are capable of under-

standing the obscurities of formal, mathematically oriented languages.

The very same applies to the methods that allow the architect to struc-
ture and manipulate architectural specifications such that their complexity

can be controlled. Not in the least, the language and methods are the basis

for unambiguous mutual understanding and successful collaboration be-
tween the stakeholders of the architecture. All stakeholders need to be

aware about the implications of the choices in the architecture, and be ca-

pable of possibly influencing such choices.

This book presents the results of a research project that produced just
that: a comprehensible, high-level design language for enterprise architec-

ture, accompanied by a set of techniques and guidelines for visualisation

and analysis of architectures. These results were validated in practice in
real-life case studies in cooperation with several large, information-inten-

sive organisations. Currently, various companies, ranging from vendors of

architecture tools to consultants and other users of enterprise architecture,
are implementing the results of the project.

This project is a prime example of the knowledge transfer for which the

Telematica Instituut was founded. Both government and industry fund this

Dutch national research institute. Its mission is to boost the innovative and
competitive power of society by bridging the gap between academic re-

search and its industrial application. The ArchiMate project, from which

this book results, is a prime example of fruitful cooperation between these
worlds. This proves the success of this knowledge transfer.

I hope and trust that the ArchiMate project not only proves to be an ex-

ample of high-quality research in the important field of enterprise archi-

tecture, but also will have a considerable impact in practice.

Prof.dr.ir. C.A. Vissers
Scientific Director

Telematica Instituut

Enschede, December 2004

Preface

Many stakeholders within and outside the company can be identified, rang-
ing from top-level management to software engineers. Each stakeholder

requires specific information presented in an accessible way, to deal with

the impact of such wide-ranging developments. To predict the effects of
such developments and modifications of an organisation’s business and IT,

it is necessary but very difficult to obtain an overview of these changes and

their impact on each other, and to provide both decision makers and engi-

neers implementing the changes with the information they need.
This book is about enterprise architecture, the practice that tries to de-

scribe and control an organisation’s structure, processes, applications, sys-

tems, and technology in such an integrated way. More specifically, we fo-
cus on methods and techniques for making and using integrated descrip-

tions by means of architecture models, visualisation of these models for

various stakeholders, and analysis of the impact of changes.

The unambiguous specification and description of components and es-
pecially their relationships in an architecture requires a coherent architec-

ture modelling language. Such a language must enable integrated model-

ling of architectural domains and should be appreciated both by people
from IT and by people with a business background. In this book, we pre-

sent such an enterprise modelling language that captures the complexity of

architectural domains and their relations and allows the construction of in-
tegrated enterprise architecture models. We provide architects with con-

crete instruments that may improve their architectural practice.

Furthermore, we provide techniques and heuristics for communicating

with all relevant stakeholders about these architectures. Central to the
communication of architectures is the notion of viewpoint. Viewpoints de-

fine abstractions on the set of models representing the enterprise architec-

ture, each aimed at a particular type of stakeholder and addressing a par-
ticular set of concerns.

An architecture model is not just useful to provide insight into the cur-

rent or future situation; it can also be used to evaluate the transition from
‘as is’ to ‘to be’. We therefore provide analysis methods for assessing both

the qualitative impact of changes to an architecture and quantitative as-

pects of architectures, such as performance and cost issues.

VIII Preface

In order to make the approach we envisage practically feasible, archi-

tects require a tool environment, which supports the definition, generation,

editing, visualisation, analysis, and management of architecture models
and views. Moreover, such an environment should work in concert with

existing domain-specific modelling tools, since we cannot expect archi-

tects to start using other tools, let alone other languages, than the ones they
are used to. Although some tool developers are active in the enterprise ar-

chitecture market, none currently provide a complete solution; some are

focused on IT portfolio management, others on business process model-

ling, or on software architecture. We therefore present the design of a
viewpoint-driven enterprise modelling environment that can provide just

this support, and a vision on the future of model-driven enterprise archi-

tecture tooling. Currently, we are working with a number of commercial
tool vendors to realise these ideas.

The modelling language and the other techniques in the book have been

proven in practice in numerous real-life case studies. To put these instru-
ments into context, the book also addresses the use of enterprise architec-

ture models and techniques in governance, with a focus on alleviating the

infamous business–IT alignment problem.

Audience

The intended audience of this book is twofold. On the one hand, we target

enterprise, business, and IT architecture practitioners, especially those who

are looking for better ways of describing, communicating, and analysing
(enterprise) architectures. On the other hand, we aim for students of IT and

(IT) management studying the field of enterprise architecture.

Overview of the Book

In the first chapter, we give an introduction to architecture in general and

enterprise architecture in particular, outline its drivers, and describe the ar-

chitecture process. Chapter 2 explains the methods and techniques cur-

rently used in this field. Following this, we outline the foundations of our
approach to enterprise architecture modelling (Chap. 3). We then describe

our view of architecture as being primarily a means of communication

with all the stakeholders involved (Chap. 4). Architectures are fruitfully
used both in requirements analysis and design for new applications, busi-

Preface IX

ness processes, etc., and to gain insight into existing systems (in the broad

sense).

In our approach, the use of architecture models has a central role; the
modelling language used throughout the rest of the book is introduced in

Chap. 5. Having a language is not enough: the architect also needs to be

guided in its use, which is the topic of Chap. 6.
Many stakeholders with different goals or concerns in mind can view

architectures. Each of these requires its own depictions of (part of) an ar-

chitecture model, and the creation, use of such views and viewpoints is the

topic of Chap. 7. Given that we have accurate models of an architecture,
we can subject these models to various types of analysis, to establish for

example what the impact of a change might be, or whether the per-

formance of the technical infrastructure is sufficient given the applications
and business processes that use it. These analyses are discussed in Chap. 8.

The practical applications of these modelling, visualisation, and analysis

techniques are the topic of the next three chapters. In Chap. 9, experiences
and best practices from case studies regarding the alignment of business,

applications, and infrastructures are presented. These provide the context

in which architectures are designed. Chapter 10 describes software tools

that are currently available and our vision on and prototypes of future
software support for enterprise architecture. Chapter 11 presents our prac-

tical experience with applying the techniques and prototypes in a number

of real-life case studies. Finally, Chap. 12 provides a vision of the future:
what is next; what comes ‘after’ architecture?

Acknowledgements

This book has resulted from the ArchiMate project, a Dutch research ini-
tiative that provides concepts and techniques to support enterprise archi-

tects in the visualisation, communication, and analysis of integrated archi-

tectures. The ArchiMate consortium consists of Telematica Instituut, ABN

AMRO, Stichting Pensioenfonds ABP, the Dutch Tax and Customs Ad-
ministration, Ordina, Centrum voor Wiskunde en Informatica, Radboud

Universiteit Nijmegen, and the Leiden Institute of Advanced Computer

Science. See http://archimate.telin.nl for more information about ArchiMate.
Chapter 9 of this book results from the GRAAL project, a daughter pro-

ject of ArchiMate. The GRAAL project is co-financed by the Telematica

Instituut and the Centre for Telematics and Information Technology
(CTIT) of the University of Twente, Enschede, The Netherlands. See

http://is.cs.utwente.nl/GRAAL for more information about GRAAL.

Contents

1 Introduction to Enterprise Architecture...1

1.1 Architecture...1

1.2 Enterprise Architecture ..2

1.3 The Architecture Process ...5

1.4 Drivers for Enterprise Architecture ..6

1.4.1 Internal Drivers...6

1.4.2 External Drivers..8

1.5 Summary ...10

2 State of the Art...11

2.1 Enterprise Architecture and Other Governance Instruments..........11

2.1.1 Strategic Management: Balanced Scorecard12

2.1.2 Strategy Execution: EFQM ...13

2.1.3 Quality Management: ISO 9001..15

2.1.4 IT Governance: COBIT...16

2.1.5 IT Service Delivery and Support: ITIL..................................17

2.1.6 IT Implementation: CMM and CMMI...................................18

2.2 Methods and Frameworks ..20

2.2.1 Enterprise Architecture Methods ...20

2.2.2 Conceptual Foundation for Architecture: The IEEE

Standard 1471-2000...22

2.2.3 The Zachman Framework ...24

2.2.4 The Open Group Architecture Framework.............................25

2.2.5 OMG’s Model-Driven Architecture.......................................27

2.2.6 Other Frameworks ..29

2.3 Architecture Languages ...31

2.3.1 IDEF...31

2.3.2 BPMN ..33

2.3.3 Testbed ...34

2.3.4 ARIS ..35

2.3.5 Unified Modeling Language..37

2.3.6 Architecture Description Languages......................................40

2.3.7 Suitability for Enterprise Architecture41

XII Contents

2.4 Service-Oriented Architecture..41

2.4.1 Service-Oriented Technologies..43

2.4.2 Relevance and Benefits for Enterprise Architecture44

3 Foundations ...47

3.1 Getting to Grips with Architectural Complexity47

3.1.1 Compositionality...48

3.1.2 Integration of Architectural Domains49

3.2 Describing Enterprise Architectures ...52

3.2.1 Observing the Universe ...52

3.2.2 Concerns...53

3.2.3 Observing Domains ..54

3.2.4 Views and Viewpoints ..55

3.2.5 Ways of Working..56

3.2.6 Enterprise Architecture Models ...56

3.3 Pictures, Models, and Semantics ..58

3.3.1 Symbolic and Semantic Models ..59

3.3.2 Symbolic Models ..61

3.3.3 Semantic Models ..63

3.3.4 UML vs. ArchiMate..64

3.4 Summary ...65

4 Communication of Enterprise Architectures....................................67

4.1 Introduction ...67

4.2 System Development as a Knowledge Transformation Process69

4.2.1 System Development Community ...69

4.2.2 System Development Knowledge..70

4.2.3 Explicitness of Knowledge..72

4.2.4 Transformations of Knowledge ...74

4.3 Conversation Strategies..75

4.4 Architectural Conversations ...78

4.4.1 Knowledge Goals..79

4.4.2 Conversation Techniques ..80

4.5 Summary ...82

5 A Language for Enterprise Modelling ..83

5.1 Describing Coherence ..83

5.2 Service Orientation and Layering ...85

5.3 Three Dimensions of Modelling...87

5.4 Business Layer Concepts ...90

5.4.1 Business Structure Concepts ...91

5.4.2 Business Behaviour Concepts..93

Contents XIII

5.4.3 Higher-Level Business Concepts...96

5.5 Application Layer Concepts...98

5.5.1 Application Structure Concepts ...99

5.5.2 Application Behaviour Concepts ...100

5.5.3 Business–Application Alignment ..101

5.6 Technology Layer Concepts...101

5.6.1 Technology Structure Concepts...102

5.6.2 Technology Behaviour Concepts...103

5.6.3 Application–Technology Alignment....................................104

5.7 Relations ...105

5.8 Modelling Example ...108

5.9 Summary ...113

6 Guidelines for Modelling ...115

6.1 Introduction ...115

6.2 The Modelling Process ..117

6.2.1 Modelling as a Transformation Process117

6.2.2 Basic Modelling Activities ..118

6.2.3 Types of Modelling Actions ..121

6.3 Guidelines for Modelling ...125

6.3.1 Before You Start ...128

6.3.2 What to Capture in a Model?...128

6.3.3 Modelling and Abstraction ..130

6.3.4 Structuring Models and Visualisations131

6.3.5 Constructive Use of Modelling Breakdowns........................135

6.4 Readability and Usability of Models ..138

6.4.1 Reducing the Visual Complexity of Models139

6.4.2 Representation Conventions ..141

6.5 Summary ...146

7 Viewpoints and Visualisation ..147

7.1 Architecture Viewpoints ..147

7.1.1 Origin of Viewpoints ..148

7.1.2 Architecture Viewpoints ...149

7.1.3 Viewpoint Frameworks ...150

7.2 Models, Views, and Visualisations...152

7.2.1 Example: Process Illustrations...154

7.2.2 Example: Landscape Maps..155

7.3 Visualisation and Interaction..157

7.3.1 Actions in Views...158

7.4 Creating, Selecting, and Using Viewpoints.................................161

7.4.1 Classification of Viewpoints ...161

XIV Contents

7.4.2 Guidelines for Using Viewpoints...165

7.4.3 Scoping...165

7.4.4 Creation of Views ...166

7.4.5 Validation ...167

7.4.6 Obtaining Commitment...168

7.4.7 Informing Stakeholders ...169

7.5 Basic Design Viewpoints ...170

7.5.1 Introductory Viewpoint ...173

7.5.2 Organisation Viewpoint ..175

7.5.3 Actor Cooperation Viewpoint..175

7.5.4 Business Function Viewpoint ..177

7.5.5 Product Viewpoint ..178

7.5.6 Service Realisation Viewpoint ..179

7.5.7 Business Process Cooperation Viewpoint180

7.5.8 Business Process Viewpoint..181

7.5.9 Information Structure Viewpoint...182

7.5.10 Application Cooperation Viewpoint182

7.5.11 Application Usage Viewpoint..184

7.5.12 Application Behaviour Viewpoint185

7.5.13 Application Structure Viewpoint186

7.5.14 Infrastructure Viewpoint ...186

7.5.15 Infrastructure Usage Viewpoint...187

7.5.16 Implementation & Deployment Viewpoint188

7.6 Summary ...189

8 Architecture Analysis ..191

8.1 Analysis Techniques ..191

8.2 Quantitative Analysis...193

8.2.1 Performance Views...194

8.2.2 Performance Analysis Techniques for Architectures............196

8.2.3 Quantitative Modelling ...198

8.2.4 Quantitative Analysis Technique ...204

8.3 Functional Analysis ...209

8.3.1 Static Analysis ..210

8.3.2 Dynamic Analysis...213

8.4 Summary ...221

9 Architecture Alignment...223

9.1 Introduction ...223

9.2 The GRAAL Alignment Framework ..224

9.2.1 System Aspects...225

9.2.2 The Aggregation Hierarchy...226

Contents XV

9.2.3 The System Process ..228

9.2.4 Refinement Levels ..229

9.2.5 Comparison with Other Frameworks229

9.3 Alignment Phenomena...230

9.3.1 Service Provisioning Layers..230

9.3.2 Infrastructure Architecture ..232

9.3.3 Business System Architecture ...235

9.3.4 Strategic Misalignment ...238

9.3.5 Conway’s Law..239

9.3.6 The FMO Alignment Pattern ...241

9.4 The Architecture Process ...242

9.4.1 Methods..242

9.4.2 IT Governance ..244

9.5 Summary ...246

10 Tool Support ..249

10.1 Reasons for Enterprise Architecture Tooling249

10.2 The Current Architecture Tool Landscape250

10.3 Tool Infrastructure ...252

10.4 Workbench for Enterprise Architecture254

10.4.1 Model Integration..254

10.4.2 Viewpoint Definition ..256

10.4.3 Transparency and Extensibility ...256

10.4.4 Software Architecture ...257

10.4.5 Exchange Formats...258

10.4.6 Workbench at Work ..258

10.5 View Designer Tool...260

10.5.1 Viewpoint Rules for Creating Views and Visualisations261

10.5.2 Defining Actions in Models and Views262

10.5.3 Interactive Visualisation..264

10.5.4 Example: The Landscape Map Tool266

10.5.5 Comparison with the Model–View–Controller

Architecture...268

10.6 Impact-of-Change Analysis Tool..269

10.7 Quantitative Analysis Tool...272

10.8 Summary ...273

11 Case Studies ...275

11.1 Process and Application Visualisation at ABP..........................275

11.1.1 ABP Meta-Model..276

11.1.2 Case Essentials..277

11.1.3 Concepts ...278

XVI Contents

11.1.4 Viewpoints..280

11.1.5 Design of the Visualiser ..283

11.1.6 Case Study Results..286

11.2 Application Visualisation at ABN AMRO................................286

11.2.1 CITA Meta-Model ..287

11.2.2 Case Essentials..288

11.2.3 Concepts ...289

11.2.4 Visualisation ...291

11.2.5 Tool Design and Results..297

11.3 Integrated Design at the Dutch Tax and Customs
Administration...297

11.3.1 Case Essentials..298

11.3.2 Views ...298

11.3.3 Performance Analysis ...306

11.3.4 Case Study Results..309

11.4 Summary ...310

12 Beyond Enterprise Architecture ...311

12.1 The World Before Enterprise Architecture311

12.2 The Advent of Enterprise Architecture313

12.3 Beyond Enterprise Architecture ...314

Appendix A – Language Meta-Model ..317

Appendix B – Graphical Notation..319

References...321

Index ...331

Contributors XVII

Contributors

1. Introduction to Enterprise Architecture
M.M. Lankhorst1

2. State of the Art
M.M. Lankhorst

1
, M.-E. Iacob

1
, H. Jonkers

1

3. Foundations
M.M. Lankhorst1, L. van der Torre

2,10
, H.A. Proper

3
, F. Arbab

2,4
,

F.S. de Boer
2,4

, M. Bonsangue
4

4. Communication of Enterprise Architectures
H.A. Proper

3
, S.J.B.A. Hoppenbrouwers

3
, G.E. Veldhuijzen van

Zanten
3

5. A Language for Enterprise Modelling
H. Jonkers1

, L. Groenewegen
4
, M. Bonsangue

4
, R. van Buuren

1

6. Guidelines for Modelling
R.J. Slagter

1
, S.J.B.A. Hoppenbrouwers

3
, M.M. Lankhorst

1
,

J. Campschroer
5

7. Viewpoints and Visualisation
M.M. Lankhorst

1
, L. van der Torre

2,10
, H.A. Proper

3
, F. Arbab

2
,

S.J.B.A. Hoppenbrouwers
3
, M.W.A. Steen

1

8. Architecture Analysis
M.-E. Iacob

1
, H. Jonkers

1
, L. van der Torre

2,10
, F.S. de Boer

2,4
,

M. Bonsangue
4
, A.W. Stam

5,4

9. Architecture Alignment
R.J. Wieringa

6
, P.A.T. van Eck

6
, D. Krukkert

6

10. Tool Support
H.W.L. ter Doest1

, D. van Leeuwen
1
, P. Fennema

1
, L. van der Torre

2,10
,

A.W. Stam5,4
, J. Jacob

2
, F. Arbab

2,4

11. Case Studies
H. Bosma5

, H. Jonkers
1
, M.J. Cuvelier

7
, P.G.M. Penders

8
, S.F. Bekius

9
,

M.-E. Iacob
1

12. Beyond Enterprise Architecture
W.P.M. Janssen

1
, M.M. Lankhorst

1

1
Telematica Instituut, Enschede, The Netherlands.

2
Centre for Mathematics and Computer Science (CWI), Amsterdam, The Nether-

lands.
3
Radboud University, Nijmegen, The Netherlands.

4
Leiden Institute of Advanced Computer Science (LIACS), Leiden, The Nether-

lands.
5
Ordina BV, Nieuwegein, The Netherlands.

XVIII Contributors

6
University of Twente, Enschede, The Netherlands.

7
Stichting Pensioenfonds ABP, Heerlen, The Netherlands.

8
ABN AMRO, Amsterdam, The Netherlands.

9
Dutch Tax and Customs Administration, Apeldoorn, The Netherlands.

10
Delft University of Technology, Delft, The Netherlands.

1 Introduction to Enterprise Architecture

In current business practice, an integrated approach to business and IT is
indispensable. As a real-life example, take the Dutch government, who are

currently undertaking a massive redesign of the entire chain of organisa-

tions involved in the social security system. Within this context, the collec-
tion of employees’ social security premiums is transferred from the central

social security organisation to the tax administration. This sounds logical,

since collecting taxes is superficially very similar to collecting social secu-

rity premiums. However, this seemingly simple change entails a major re-
design of organisational structures, business processes, IT applications,

and technical infrastructure. Enormous flows of data need to be redirected

within and among the different organisations: more than 600,000 payroll
tax returns are filed each month, a large proportion of which arrive within

a peak period of a couple of days.

Controlling such changes cannot be done by just ‘winging it’. But how

can we get to grips with this complex, multi-faceted world?

1.1 Architecture

It is often said that to manage the complexity of any large organisation or

system, you need architecture. But what exactly does ‘architecture’ mean?
Of course, we have long known this notion from building and construction.

Suppose you contract an architect to design your house. You discuss how

rooms, staircases, windows, bathrooms, balconies, doors, a roof, etc., will
be put together. You agree on a master plan, on the basis of which the ar-

chitect will produce detailed specifications, to be used by the engineers

and builders.

How is it that you can communicate so efficiently about that master
plan? We think it is because you share a common frame of reference: you

both know what a ‘room’ is, a ‘balcony’, a ‘staircase’, etc. You know their

function and their relation. A ‘room’, for example, serves as a shelter and
is connected to another ‘room’ via a ‘door’. You both use, mentally, an ar-

chitectural model of a house. This model defines its major functions and

how they are structured. It provides an abstract design, ignoring many de-

2 Introduction to Enterprise Architecture

tails. These details, like the number of rooms, dimensions, materials to be

used, and colours, will be filled in later.

A similar frame of reference is needed in designing an enterprise. To
create an overview of the structure of an organisation, its business proc-

esses, their application support, and the technical infrastructure, you need

to express the different aspects and domains, and their relations.
But what is ‘architecture’ exactly? Even in building and construction,

the term is not without ambiguity. It can signify the art and science of de-

signing the built environment, or the product of such a design. Thus, the

term architecture encompasses both the blueprint for a building and the
general underlying principles such as its style, as in ‘gothic architecture’.

In this book, we will use the IEEE Standard 1471-2000 (IEEE Computer

Society 2000; see also Sect. 2.2.2) definition of architecture:

Architecture is the fundamental organisation of a system embodied

in its components, their relationships to each other, and to the envi-

ronment, and the principle guiding its design and evolution.

This definition accommodates both the blueprint and the general princi-
ples. More succinctly, we could define architecture as ‘structure with a vi-

sion’. An architecture provides an integrated view of the system being de-

signed or studied.
As well as the definition of architecture, we will use two other important

notions from the IEEE standard. First, a ‘stakeholder’ is defined as fol-

lows:

Stakeholder: an individual, team, or organisation (or classes

thereof) with interests in, or concerns relative to, a system.

Most stakeholders of a system are probably not interested in its architec-

ture, but only in the impact of this on their concerns. However, an architect

needs to be aware of these concerns and discuss them with the stake-
holders, and thus should be able to explain the architecture to all stake-

holders involved, who will often have completely different backgrounds.

1.2 Enterprise Architecture

More and more, the notion of architecture is applied with a broader scope

than just in the technical and IT domains. Architecture at the level of an

entire organisation is commonly referred to as ‘enterprise architecture’. An
‘enterprise’ in this context can be defined as follows (The Open Group

2002):

Enterprise Architecture 3

Enterprise: any collection of organisations that has a common set

of goals and/or a single bottom line.

This leads us to the definition of enterprise architecture:

Enterprise architecture: a coherent whole of principles, methods,

and models that are used in the design and realisation of an enter-
prise’s organisational structure, business processes, information sys-

tems, and infrastructure.

Enterprise architecture captures the essentials of the business, IT and its

evolution. The idea is that the essentials are much more stable than the

specific solutions that are found for the problems currently at hand. Archi-

tecture is therefore helpful in guarding the essentials of the business, while
still allowing for maximal flexibility and adaptivity. Without good archi-

tecture, it is difficult to achieve business success.

The most important characteristic of an enterprise architecture is that it
provides a holistic view of the enterprise. Within individual domains local

optimisation will take place and from a reductionistic point of view, the ar-

chitectures within this domain may be optimal. However, this need not
lead to a desired situation for the company as a whole. For example, a

highly optimised technical infrastructure that offers great performance at

low cost might turn out to be too rigid and inflexible if it needs to support

highly agile and rapidly changing business processes. A good enterprise
architecture provides the insight needed to balance these requirements and

facilitates the translation from corporate strategy to daily operations.

To achieve this quality in enterprise architecture, bringing together in-
formation from formerly unrelated domains necessitates an approach that

is understood by all those involved from these different domains. In con-

trast to building architecture, which has a history over millennia in which a

common language and culture has been established, such a shared frame of
reference is still lacking in business and IT. In current practice, architec-

ture descriptions are heterogeneous in nature: each domain has its own de-

scription techniques, either textual or graphical, either informal or with a
precise meaning. Different fields speak their own languages, draw their

own models, and use their own techniques and tools. Communication and

decision making across these domains is seriously impaired.
What is part of the enterprise architecture, and what is only an imple-

mentation within that architecture, is a matter of what the business defines

to be the architecture, and what not. The architecture marks the separation

between what should not be tampered with and what can be filled in more
freely. This places a high demand for quality on the architecture. Quality

4 Introduction to Enterprise Architecture

means that the architecture actually helps in achieving essential business

objectives. In constructing and maintaining an architecture, choices should

therefore be related to the business objectives, i.e., they should be rational.
Even though an architecture captures the relatively stable parts of busi-

ness and technology, any architecture will need to accommodate change,

and architecture products will therefore only have a temporary status. Ar-
chitectures change because the environment changes and new technologi-

cal opportunities arise, and because of new insights as to what is essential

to the business. To ensure that these essentials are discussed, a good archi-

tecture clearly shows the relation of the architectural decisions to the busi-
ness objectives of the enterprise.

The instruments needed for creating and using enterprise architectures

are still in their infancy. To create an integrated perspective of an enter-
prise, we need techniques for describing architectures in a coherent way

and communicating these with all relevant stakeholders. Different types of

stakeholders will have their own viewpoints on the architecture. Further-
more, architectures are subject to change, and methods to analyse the ef-

fects of these changes are necessary in planning future developments. Of-

ten, an enterprise architect has to rely on existing methods and techniques

from disparate domains, without being able to create the ‘big picture’ that
puts these domains together. This requires an integrated set of methods and

techniques for the specification, analysis, and communication of enterprise

architectures that fulfils the needs of the different types of stakeholders in-
volved. In this book, we will introduce such an approach. Architecture

models, views, presentations, and analyses all help to bridge the ‘commu-

nication gap’ between architects and stakeholders (Fig. 1.1).

ModelsModels

ArchitectsArchitects

PresentationPresentation

ViewView

StakeholdersStakeholders
viewpointviewpoint

Analysis

analysis question

Analysis

analysis questionanalysis question

Fig. 1.1. Communicating about architecture.

The Architecture Process 5

1.3 The Architecture Process

Architecture is a process as well as a product. The product serves to guide

managers in designing business processes and system developers in build-
ing applications in a way that is in line with business objectives and poli-

cies. The effects of the process reach further than the mere creation of the

architecture product – the awareness of stakeholders with respect to busi-
ness objectives and information flow will be raised. Also, once the archi-

tecture is created, it needs to be maintained. Businesses and IT are con-

tinually changing. This constant evolution is, ideally, a rational process.
Change should only be initiated when people in power see an opportunity

to strengthen business objectives.

The architecture process consists of the usual steps that take an initial

idea through design and implementation phases to an operational system,
and finally changing or replacing this system, closing the loop. In all of the

phases of the architecture process, clear communication with and between

stakeholders is indispensable. The architecture descriptions undergo a life
cycle that corresponds to this design process (Fig. 1.2). The different archi-

tecture products in this life cycle are discussed with stakeholders, ap-

proved, revised, etc., and play a central role in establishing a common

frame of reference for all those involved.

Idea

Design

Use

Management

Formal models

Analysis

Napkin

Whiteboard

PowerPoint

Link with

implementation

Maintenance

Version control

Visualisation
for different
stakeholders

Architecture

process

Fig. 1.2. The architecture description life cycle.

6 Introduction to Enterprise Architecture

1.4 Drivers for Enterprise Architecture

It need not be stressed that any organisation benefits from having a clear

understanding of its structure, products, operations, technology, and the
web of relations tying these together and connecting the organisation to its

surroundings. Furthermore, there are external pressures to take into ac-

count, both from customers, suppliers, and other business partners, and
from regulatory bodies. Especially if a company becomes larger and more

complicated, good architectural practice becomes indispensable. Here, we

briefly outline the most important and commonly recognised internal and
external drivers for establishing an enterprise architecture.

1.4.1 Internal Drivers

Business–IT alignment is commonly recognised as an important instru-

ment to realise organisational effectiveness. Such effectiveness is not ob-
tained by local optimisations, but is realised by well-orchestrated interac-

tion of organisational components (Nadler et al. 1992). Effectiveness is

driven by the relationships between components rather than by the detailed

specification of each individual component. A vast amount of literature has
been written on the topic of alignment, underlining the significance of both

‘soft’ and ‘hard’ components of an organisation.

Parker and Benson (1989) were forerunners in using the term ‘align-
ment’ in this context and emphasising the role of architecture in strategic

planning. The well-known strategic alignment model of Henderson and

Venkatraman (1993) distinguishes between the aspects of business strategy
and organisational infrastructure on the one hand, and IT strategy and IT

infrastructure on the other hand (Fig. 1.3). The model provides four domi-

nant perspectives that are used to tackle the alignment between these as-

pects. One can take the business strategy of an enterprise as the starting
point, and derive its IT infrastructure either via an IT strategy or through

the organisational infrastructure; conversely, one can focus on IT as an en-

abler and start from the IT strategy, deriving the organisational infrastruc-
ture via a business strategy or based on the IT infrastructure. In any of

these perspectives, an enterprise architecture can be a valuable help in exe-

cuting the business or IT strategy.

Drivers for Enterprise Architecture 7

Organisational

infrastructure

and processes

E
x
te
rn
a
l

Business Information Technology

Functional Integration

Strategic Fit

In
te
r
n
a
l

IT infrastructure

and processes

Business

Strategy
IT Strategy

Fig. 1.3. Strategic alignment model (Henderson and Venkatraman 1993).

Nadler et al. (1992) identify four relevant alignment components: work,
people, the formal organisation and the informal organisation. Labovitz

and Rosansky (1997) emphasise the horizontal and vertical alignment di-

mensions of an organisation. Vertical alignment describes the relation be-
tween the top strategy and the people at the bottom, whereas horizontal

alignment describes the relation between internal processes and external

customers. Obviously, the world of business–IT alignment is as diverse as
it is complex. In coping with this complexity, enterprise architecture is of

valuable assistance.

In Fig. 1.4, enterprise architecture is positioned within the context of

managing the enterprise. At the top of this pyramid, we see the mission of
the enterprise: why does it exist? The vision states its ‘image of the future’

and the values the enterprise holds. Next there is its strategy, which states

the route the enterprise will take in achieving this mission and vision. This
is translated into concrete goals that give direction and provide the mile-

stones in executing the strategy. Translating those goals into concrete

changes to the daily operations of the company is where enterprise archi-

tecture comes into play. It offers a holistic perspective of the current and
future operations, and on the actions that should be taken to achieve the

company’s goals.

Next to its architecture, which could be viewed as the ‘hard’ part of the
company, the ‘soft’ part, its culture, is formed by its people and leadership,

and is of equal if not higher importance in achieving these goals. Finally,

of course, we see the enterprise’s daily operations, which are governed by
the pyramid of Fig. 1.4.

8 Introduction to Enterprise Architecture

Mission

Goals

Strategy

Actions

Vision

as is to be

enterprise architecture culture

domain/aspect

architectures people

leadership

Operations

…
peopleprocesses ITproducts

Fig. 1.4. Enterprise architecture as a management instrument.

To some it may seem that architecture is something static, confining

everything within its rules and boundaries, and hampering innovation. This

is a misconception. A well-defined architecture is an important asset in po-

sitioning new developments within the context of the existing processes,
IT systems, and other assets of an organisation, and it helps in identifying

necessary changes. Thus, good architectural practice helps a company in-

novate and change by providing both stability and flexibility. The insights
provided by an enterprise architecture are needed on the one hand in de-

termining the needs and priorities for change from a business perspective,

and on the other hand in assessing how the company may benefit from
technological innovations.

Moreover, in an increasingly networked world, no enterprise can focus

solely on its own operations. To get to grips with the wealth of intercon-

nections with customers, suppliers, and other partners, an enterprise archi-
tecture is a valuable asset. A prominent example of this is outsourcing part

of a company’s business processes and/or IT operations. For any sourcing

project to be successful, it is paramount to have a clear insight into pre-
cisely what the activities and responsibilities are of all the partners in-

volved, and what the services and interfaces between these partners are.

1.4.2 External Drivers

Next to the internal drive to execute effectively an organisation’s strategy
and optimise its operations, there are also external pressures that push or-

ganisations towards adopting enterprise architecture practice. The regula-

Drivers for Enterprise Architecture 9

tory framework increasingly demands that companies and governmental

institutions can prove that they have a clear insight into their operations

and that they comply with the applicable laws on, say, financial transac-
tions.

In the USA, the Clinger–Cohen Act of 1996, also known as the Informa-

tion Technology Management Reform Act, demands that every govern-
ment agency must have an IT architecture, which is defined as: ‘an inte-

grated framework for evolving or maintaining existing information

technology and acquiring new information technology to achieve the

agency's strategic goals and information resources management goals.’
Section 5125 (b) of the Act assigns the Agency Chief Information Officer

(CIO) the responsibility of ‘developing, maintaining, and facilitating the

implementation of a sound and integrated information technology architec-
ture.’ The US Department of Defense even requires all IT to comply with

this Act, including that in weapons and weapons system programmes.

The Clinger–Cohen Act has been an important stimulus for the devel-
opment of enterprise architecture as a discipline, not just in a government

context, but in general. Although most European governments do not im-

pose such strict requirements on their agencies, these architecture practices

are making inroads in Europe as well.
The capital adequacy framework known as Basel II, endorsed in 2004

by the central bank governors and the heads of bank supervisory authori-

ties in the Group of Ten (G10) countries, puts requirements on banking or-
ganisations with respect to their financial risk management, to promote

stability in the financial world. The Basel II framework imposes strict

regulations on banks in terms of risk measurement and management, with
wide-ranging implications for both their organisations and their IT sys-

tems. The framework provides explicit incentives in the form of lower

capital requirements for banks to adopt more comprehensive and accurate

measures of risk as well as more effective processes for controlling their
exposures to risk. This encompasses both credit risk and operational risk,

the latter being defined as the risk of loss resulting from inadequate or

failed internal processes, people and systems or from external events.
Given this wide scope and the detailed requirements on risk management,

compliance with Basel II can hardly be envisaged without a sound archi-

tectural approach.

Another US act, the Sarbanes–Oxley Act of 2002, also has a major im-
pact. This act, formally known as the Public Company Accounting Reform

and Investor Protection Act, was drawn up in the aftermath of the Enron

scandal, to force companies to adopt good corporate governance practices
and to make company executives personally accountable. These account-

ability regulations make it very important for a company that it is clear

10 Introduction to Enterprise Architecture

what the responsibilities of each employee are. IT systems must provide

the necessary accounting information to be able to perform the audits re-

quired by the Act, and should enforce their users to have appropriate au-
thorisation. Again, enterprise architecture may be of assistance in provid-

ing the necessary insight, and many companies are improving their

architecture practice to conform to these regulations. And given that this
Act applies to all companies that have their stocks quoted on the US stock

exchanges, it has a worldwide impact.

1.5 Summary

Architecture is the art and science of designing complex structures. Enter-

prise architecture, more specifically, is defined as a coherent whole of

principles, methods, and models that are used in the design and realisation

of an enterprise’s organisational structure, business processes, information
systems, and infrastructure. Architecture models, views, presentations, and

analyses all help to bridge the ‘communication gap’ between architects and

stakeholders.
Architecture is an indispensable instrument in controlling the complex-

ity of the enterprise and its processes and systems. On the one hand, we

see internal drivers for using an architectural approach, related to the strat-

egy execution of an organisation. Better alignment between business and
IT leads to lower cost, higher quality, better time-to-market, and greater

customer satisfaction. On the other hand, external drivers from regulatory

authorities and other pressures necessitate companies to have a thorough
insight into their structure and operations. All of these drivers make a clear

case for the use of enterprise architecture.

2 State of the Art

This chapter gives an overview of currently used methods and techniques
in enterprise architecture. Naturally, this description is a snapshot, and we

cannot claim to be exhaustive, since the field of enterprise architecture is

evolving rapidly. However, it provides this broad overview of current
methods and techniques to give the reader an impression of the advances

in this field.

First, we position enterprise architecture relative to a number of well-

known standards and best practices in general and IT management. Sec-
ond, we outline the most important frameworks and methods for enterprise

architecture currently in use. Next, we discuss service orientation, the most

important architectural paradigm that has emerged over the last few years.
Finally, we describe a number of relevant languages for modelling organi-

sations, business processes, applications, and technology.

Based upon this state of the art, in the next chapter we will describe

what we see as missing in current methods and techniques, and how our
own approach tries to fill some of these gaps.

2.1 Enterprise Architecture and Other Governance
Instruments

Enterprise architecture is typically used as an instrument in managing a

company’s daily operations and future development. But how does it fit in
with other established management practices and instruments?

Here, we describe how enterprise architecture is positioned within the

context of corporate and IT governance by relating it to a number of well-
known best practices and standards in general and IT management, as out-

lined in Fig. 2.1. In the next subsections, we will treat the relation of enter-

prise architecture with some well-known management practices in each of

these areas:
– strategic management: the Balanced Scorecard;

– strategy execution: EFQM;

– quality management: ISO 9001;

12 State of the Art

– IT governance: COBIT;

– IT delivery and support: ITI;

– IT implementation: CMM and CMMI.

Strategic

Management

Strategic

Management

Strategy

Execution

Strategy

Execution

Quality

Management

Quality

Management

IT GovernanceIT Governance

IT Delivery & SupportIT Delivery & Support

IT ImplementationIT Implementation

General Management IT Management

Fig. 2.1. Management areas relevant to enterprise architecture.

2.1.1 Strategic Management: Balanced Scorecard

Kaplan and Norton (1992) introduced the balanced scorecard (BSC) as a

management system that helps an enterprise to clarify and implement its

vision and strategy. Traditionally, management focus has strongly been on
financial aspects. Kaplan and Norton argue that financial measures alone

are inadequate to guide the future development of an organisation, and that

they should be supplemented with measures concerning customer satisfac-
tion, internal processes, and the ability to innovate.

The BSC therefore suggests to view an enterprise from four perspec-

tives. The Customer perspective asks how the enterprise should appear to

its customers, with measures like customer satisfaction. The Financial per-
spective is focused on the business value created by the enterprise, entail-

ing measures such as shareholder value. The Internal Business Processes

perspective looks at the effectiveness and efficiency of a company’s inter-
nal operations, paying special attention to the primary, mission-oriented

processes. Finally, the Learning and Growth perspective addresses the

corporate and individual ability to change and improve, which is critical to
any knowledge-intensive organisation. For each of the four perspectives

the BSC proposes a three-layered structure:

1. mission (e.g., to become the customers’ preferred supplier);

2. objectives (e.g., to provide the customers with new products);
3. measures (e.g., percentage of turnover generated by new products).

Enterprise Architecture and Other Governance Instruments 13

To put the BSC to work, a company should first define its mission, objec-

tives, and measures for each perspective, and then translate these into a

number of appropriate targets and initiatives to achieve these goals.
What is important in the BSC is the notion of double-loop feedback.

First of all, one should measure the outputs of internal business processes

and not only fix defects in these outputs but also identify and remedy the
causes of these defects. Moreover, such a feedback loop should also be in-

stituted for the outcomes of business strategies. Performance measurement

and management by fact are central to the BSC approach.

If we look at the role of enterprise architecture as a management instru-
ment, it would be especially useful within the Internal Business Processes

perspective of the BSC. Many operational metrics can be tied to a well-

defined enterprise architecture and various performance analyses might be
carried out. However, enterprise architecture has a broader use. In the

Learning and Growth perspective, a company’s ability to evolve, to antici-

pate, and to respond to a changing environment is vital. To determine an
organisation’s agility, it is important to assess what the impact and feasi-

bility of future changes might be. Impact analysis of an enterprise architec-

ture may assist in such an assessment.

2.1.2 Strategy Execution: EFQM

Another important management approach is the EFQM (European Founda-

tion for Quality Management) Excellence Model (EFQM 2003). This

model was first introduced in 1992 as the framework for assessing applica-
tions for The European Quality Award, and was inspired by the Malcolm

Baldridge Model in the USA and the Deming Prize in Japan.

The EFQM model has a much broader scope than ISO 9001 (see Sect.

2.1.3). It not only focuses on quality management, but provides an overall
management framework for performance excellence of the entire organisa-

tion. The EFQM model consists of nine criteria for excellence, five of

which are ‘enablers’, covering what an organisation does, and four are ‘re-
sults’, covering what that organisation achieves. These criteria and their

mutual relationships are shown in diagrammatic form in Fig. 2.2. Leader-

ship and Policy & Strategy determine the direction and focus of the enter-

prise; based on this, the People of the enterprise, its Partnerships & Re-
sources, and its Processes make it happen; stakeholders of the results

achieved are its Customers, its People, and Society in general; and these

stakeholder results contribute to the enterprise’s Key Performance Results,
which comprise both financial and non-financial aspects. The EFQM

model provides principles, measures, and indicators for assessing the per-

14 State of the Art

formance of an enterprise in all of these aspects, and these measurements

are the basis for continuous learning, innovation, and improvement.

All this also points to the main difference between the EFQM model and
the BSC: whereas the latter is focused on developing effective strategic

management, the former concentrates on measuring and benchmarking the

performance of an organisation with respect to a number of best practices.
Both are complementary: the BSC helps to make strategic choices, and the

EFQM model assists in continuous improvement necessary to execute this

strategy.

Partnerships

& Resources

Partnerships

& Resources

Leader-

Ship

Leader-

Ship ProcessesProcesses

People
People

Policy &

Strategy

Policy &

Strategy
Key

Performance

Results

Key

Performance

Results

People

Results

People

Results

Customer

Results

Customer

Results

Society

Results

Society

Results

Innovation & Learning

Enablers Results

Fig. 2.2. The EFQM Excellence Model (EFQM 2003).

Positioning enterprise architecture with respect to the EFQM model, we

view it especially as an important instrument for the Policy & Strategy and
the Processes aspects. Based on its mission and vision, an organisation will

determine the policies and strategies needed to meet the present and future

needs and expectations of its stakeholders. An enterprise architecture is a
valuable instrument in operationalising and implementing these policies

and strategies. First of all, it offers insight into the structure and operation

of the enterprise as a whole by creating a bird’s-eye view of its organisa-

tional structure, business processes, information systems, and infrastruc-
ture. Such an overview is indispensable when formulating a coherent strat-

egy. Furthermore, an enterprise architecture helps in developing,

managing, and communicating company-wide standards of operation,

Enterprise Architecture and Other Governance Instruments 15

needed to ensure that company policies are indeed implemented. Finally,

by providing a better understanding of the effects of changes, it is of valu-

able assistance in creating roadmaps for the future, needed to assess and
execute the longer-term enterprise strategy.

2.1.3 Quality Management: ISO 9001

The ISO 9001:2000 standard (ISO 2000) of the International Organisation

for Standardisation (ISO) outlines criteria for a good quality management
system (QMS). Based on a quality policy and quality goals, a company de-

signs and documents a QMS to control how processes are performed. The

requirements of the standard cover everything from how a company plans
its business processes, to how these are carried out, measured, and im-

proved.

Starting from general, overall requirements, the standard states the re-
sponsibilities of management for the QMS. It then gives requirements for

resources, including personnel, training, the facility, and work environ-

ment. The demands on what is called ‘product realisation’, i.e., the busi-

ness processes that realise the company’s product or service are the core of
the standard. Key processes, i.e., those processes that affect product or ser-

vice quality, must be identified and documented. This includes planning,

customer-related processes, design, purchasing, and process control. Fi-
nally, requirements are put on measurement, analysis, and improvement of

these business processes. Once the quality system is installed, a company

can request an audit by a Registrar. If it conforms to all the criteria, the
company will be ISO 9001 registered.

Although the standard has earned a reputation as being very ‘document-

heavy’, this mainly pertains to its previous versions of 1987 and 1994.

Notwithstanding these criticisms, the business value of a good QMS is
universally acknowledged. In Europe, industrial companies increasingly

require ISO 9001 registration from their suppliers, and the universal accep-

tance as an international standard is growing.
Looking at enterprise architecture from the perspective of quality man-

agement in general and ISO 9001 in particular, we see its main contribu-

tion in the integrated design, management and documentation of business

processes, and their supporting IT systems. A well-designed and docu-
mented enterprise architecture helps an organisation to conform to the ISO

9001 requirements on process identification and documentation; con-

versely, the need for a QMS may direct focus to an enterprise architecture
initiative, by putting the emphasis on those processes and resources that

are critical for the company’s product or service quality. In this way, qual-

16 State of the Art

ity management and enterprise architecture form a natural combination:

the former is concerned with what needs to be designed, documented, con-

trolled, measured, and improved, and the latter determines how these high-
quality processes and resources are organised and realised.

2.1.4 IT Governance: COBIT

The COBIT (Control Objectives for Information and related Technology)

standard for IT governance was initially published in 1996 by the Informa-
tion Systems Audit and Control Association. Now in its the third edition,

issued in 2000 by the IT Governance Institute (COBIT 2000), COBIT, an

internationally accepted IT control framework that provides organisations
with ‘good practices’ that help in implementing an IT governance structure

throughout the enterprise. It aims to bridge the gaps between business

risks, control needs, and technical issues. The basic premise of COBIT is
that in order to provide the information that the organisation needs to

achieve its objectives, IT resources need to be managed by a set of natu-

rally grouped processes.

The core of the COBIT framework are the control objectives and man-
agement guidelines for 34 identified IT processes, which are grouped into

four domains: planning and organisation, acquisition and implementation,

delivery and support, and monitoring. Here, ‘control’ is defined by COBIT
as the policies, procedures, practices, and organisational structures de-

signed to provide reasonable assurance that business objectives will be

achieved and that undesired events will be prevented or detected and cor-
rected. The control objectives can help to support IT governance within an

enterprise. For example, the control objectives of the ‘Assist and advise IT

customers’ process consist of establishing a help desk, registration of the

customer queries, customer query escalation, monitoring of clearance, and
trend analysis and reporting.

Next to the framework of control objectives, COBIT provides critical

success factors for achieving optimal control over IT processes, key goal
indicators, which measure whether an IT process has met its business re-

quirements, and key performance indicators, which define measures of

how well the IT process is performing towards achieving its goals.

COBIT also offers a maturity model for IT governance, consisting of
five maturity levels:

1. Ad Hoc: There are no standardised processes. Ad hoc approaches are

applied on a case-by-case basis.

Enterprise Architecture and Other Governance Instruments 17

2. Repeatable: Management is aware of the issues. Performance indicators

are being developed, basic measurements have been identified, as have

assessment methods and techniques.
3. Defined: The need to act is understood and accepted. Procedures have

been standardised, documented, and implemented. BSC ideas are being

adopted by the organisation.
4. Managed: Full understanding of issues on all levels has been reached.

Process excellence is built on a formal training curriculum. IT is fully

aligned with the business strategy.

5. Optimised: Continuous improvement is the defining characteristic.
Processes have been refined to the level of external best practices based

on the results of continuous improvement with other organisations.

This maturity model closely resembles the Capability Maturity Model
(CMM) for software development and its successor the CMMI (see Sect.

2.1.6).

According to COBIT, well-defined architectures are the basis for a good
internal control environment. In many enterprises, the IT organisation will

be responsible for establishing and maintaining the enterprise architecture.

Whereas COBIT focuses on how one should organise the (secondary) IT

function of an organisation, enterprise architecture concentrates on the
(primary) business and IT structures, processes, information and technol-

ogy of the enterprise. Thus, enterprise architecture forms a natural com-

plement to COBIT. Relative to the maturity levels of COBIT, enterprise
architecture will of course be most relevant in the upper level. At the Re-

peatable level, a first awareness of the value of architecture may arise, but

there is typically no established architectural practice at the enterprise
level. Only from the Defined level upwards is it recognised and used as an

important instrument in planning and managing IT developments in coor-

dination with business needs.

2.1.5 IT Service Delivery and Support: ITIL

ITIL (IT Infrastructure Library) is the most widely accepted set of best

practices in the IT service delivery domain. It was originally developed by

the UK Office of Government Commerce (OGC), to improve management

of IT services in the UK central government. The OGC’s objectives were
on the one hand to create a comprehensive and consistent set of best prac-

tices for quality IT service management, and on the other hand to encour-

age the private sector to develop training, consultancy, and tools that sup-
port ITIL. Over the years, ITIL has gained broad support and has become

the worldwide de facto standard for IT service management. The ITIL us-

18 State of the Art

ers group, the IT Service Management Forum (itSMF1), actively promotes

the exchange of information and experiences to help IT service providers

manage service delivery.
ITIL comprises a series of documents giving guidance on the provision

of good IT services, and on the facilities needed to support IT. ITIL has a

process-oriented approach to service management. It provides codes of
practice that help organisations to establish quality management of their IT

services and infrastructure, where ‘quality’ is defined as ‘matched to busi-

ness needs and user requirements as these evolve.’ It does this by provid-

ing guidance on the design and implementation of the various processes
within the IT organisation. The core of ITIL consists of two broad groups

of processes:

− Service Delivery, comprising service-level management, availability

management, financial management for IT services, IT service contin-
gency management, and capacity management;

− Service Support, covering problem management, incident management,

service desk, change management, release management, and configura-

tion management.

ITIL is complementary to COBIT. The high-level control objectives of

COBIT can be implemented through the use of ITIL. Its help desk module,

for example, complements and provides details on the help desk process

including the planning, implementation, post-implementation, benefits and
costs, and tools. So, COBIT’s control objectives tell what to do and ITIL

explains how to do it, i.e., what the best-practice processes are to realise

these objectives.
Management of the IT assets of an organisation is central to ITIL. This

is where a well-developed enterprise architecture is very valuable. It pro-

vides IT managers with a clear understanding of the IT applications and in-
frastructure, the related business processes, and the various dependencies

between these domains. Nearly all of the core processes identified by ITIL

will benefit from this.

2.1.6 IT Implementation: CMM and CMMI

The Capability Maturity Model for Software (Paulk et al. 1993), also

known as the CMM and SW-CMM, is a model for judging the maturity of

an organisation’s software engineering processes, and provides organisa-

tions with key practices required to help them increase the maturity of

1
 http://www.itsmf.com

Enterprise Architecture and Other Governance Instruments 19

these processes. In 2000, the SW-CMM was upgraded to CMMI (Capabil-

ity Maturity Model Integration), which addresses the integration of soft-

ware development with other engineering activities and expands the scope
to encompass the entire product life cycle, including systems engineering,

integrated product and process development, and supplier sourcing. The

CMM’s popularity has sparked off the development of similar maturity
models in other fields, including enterprise architecture; see, e.g., the

NASCIO Enterprise Architecture Maturity Model (NASCIO 2003).

In the CMMI maturity models in their most common form, there are

five maturity levels, each a layer in the foundation for ongoing process im-
provement, designated by the numbers 1 to 5 (CMMI Product Team 2002):

1. Initial: Processes are usually ad hoc and chaotic. The organisation does

not provide a stable environment. Success in these organisations de-
pends on the competence and heroics of the people in the organisation

and not on the use of proven processes.

2. Managed: The projects of the organisation have ensured that require-
ments are managed and that processes are planned, performed, meas-

ured, and controlled. However, processes may be quite different in each

specific instance, e.g., on a particular project.

3. Defined: Processes are well characterised and understood, and are de-
scribed in standards, procedures, tools, and methods. These standards

are used to establish consistency across the organisation. Projects estab-

lish their defined processes by tailoring the organisation’s set of stan-
dard processes according to tailoring guidelines.

4. Quantitatively Managed: Quantitative objectives for quality and proc-

ess performance are established and used as criteria in managing proc-
esses. Quantitative objectives are based on the needs of the customer,

end users, organisation, and process implementers.

5. Optimising: Process performance is continually improved through both

incremental and innovative technological improvements. Quantitative
process-improvement objectives for the organisation are established,

continually revised to reflect changing business objectives, and used as

criteria in managing process improvement.

The CMMI provides numerous guidelines for assessing the maturity of an

organisation and the improvements needed in various process areas to pro-

ceed from one level to the next. Next to this familiar staged representation

of the maturity model in terms of consecutive maturity levels, there is now
a continuous representation as well.

In any software engineering project of substantial size, software archi-

tecture plays an important role. The context of this software architecture
may be given by an enterprise architecture, which provides constraints and

20 State of the Art

guidelines for individual software projects. As such, enterprise architecture

is something that becomes especially useful (or even necessary) at CMMI
Level 3 and beyond, where projects have to conform to organisation-wide

standards and guidelines.

2.2 Methods and Frameworks

To provide more insight into the different aspects that an enterprise archi-

tecture model may encompass, we will outline a number of well-known

architecture frameworks. Frameworks structure architecture description
techniques by identifying and relating different architectural viewpoints

and the modelling techniques associated with them. They do not provide

the concepts for the actual modelling, although some frameworks are
closely connected to a specific modelling language or set of languages.

Most architecture frameworks are quite precise in establishing what

elements should be part of an enterprise architecture. However, to ensure
the quality of the enterprise architecture during its life cycle the adoption

of a certain framework is not sufficient. The relations between the different

types of domains, views, or layers of the architecture must remain clear,
and any change should be carried through methodically in all of them. For

this purpose, a number of methods are available, which assist architects

through all phases of the life cycle of architectures.

2.2.1 Enterprise Architecture Methods

An architecture method is a structured collection of techniques and process

steps for creating and maintaining an enterprise architecture. Methods

typically specify the various phases of an architecture’s life cycle, what de-
liverables should be produced at each stage, and how they are verified or

tested. The following methods for architecture development are worth

mentioning:

− Although meant for software development, the Rational Unified Process

(RUP) (Jacobson et al. 1999) is of interest here, as it defines an iterative

process, as opposed to the classical waterfall process, that realises soft-

ware by adding functionality to the architecture at each increment. An
extension towards enterprise IT architecture is given by McGovern et al.

(2004) in the form of the Enterprise Unified Process.

− The UN/CEFACT Modelling Methodology (UMM) is an incremental
business process and information model construction methodology. The

scope is intentionally restricted to business operations, omitting tech-

Methods and Frameworks 21

nology-specific aspects. The Business Collaboration Framework (BCF),

which is currently under development, will be a specialisation of the

UMM aimed at defining an enterprise’s external information exchanges
and their underlying business activities. See UN/CEFACT (2004).

– The TOGAF Architecture Development Method (ADM) (see Fig. 2.3

and Sect. 2.2.4), developed by The Open Group, provides a detailed
and well-described phasing for developing an IT architecture. Version 8

of TOGAF entitled ‘Enterprise Edition’ (The Open Group 2002) pro-

vides a framework and development method for developing enterprise

architectures.

Framework

and

Principles

Requirements

A

Architecture

Vision

B

Business

Architecture C

Information

Systems

Architectures

H

Architecture

Change

Management

G

Implementation

Governance

F

Migration

Planning

E

Opportunities

and

Solutions

D

Technology

Architecture

1

Create

Baseline

2

Consider

Views 3

Create

Architecture

Model

4

Select

Services

5

Confirm

Business

Objects6

Define

Criteria

7

Define

Archi-

tecture

8
Conduct

Gap
Analysis

D

Technology

Architecture

1

Create

Baseline

2

Consider

Views 3

Create

Architecture

Model

4

Select

Services

5

Confirm

Business

Objects6

Define

Criteria

7

Define

Archi-

tecture

8
Conduct

Gap
Analysis

Fig. 2.3. TOGAF architecture development cycle (based on The Open Group

2002).

− The Chief Information Officers Council has created The Federal Enter-

prise Architecture Framework (FEAF) accompanied by a practical and

useful manual for developing enterprise architecture for governmental
organisations (CIO Council 2004). Other initiatives of the US govern-

ment include the Federal Enterprise Architecture (FEA) of the Federal

Enterprise Architecture Program Management Office (FEAPMO 2004)
and the Treasury Architecture Development Process by the Department

of the Treasury (US Treasury 2004).

22 State of the Art

2.2.2 Conceptual Foundation for Architecture: The IEEE
Standard 1471-2000

In 2000, the IEEE Computer Society approved IEEE Standard 1471-2000

(IEEE Computer Society 2000), which builds a solid theoretical base for
the definition, analysis, and description of system architectures. IEEE 1471

focuses mainly on software-intensive systems, such as information sys-

tems, embedded systems, and composite systems in the context of comput-

ing. IEEE 1471 uses the civil architecture metaphor to describe software
system architectures. In this sense, it is similar to the framework of Zach-

man (see Sect. 2.2.3), although it does not try to standardise the system ar-

chitecture by establishing a fixed number, or the nature of views (as in the
case of the 36 cells of Zachman’s framework). IEEE 1471 also does not try

to standardise the process of developing architectures, and therefore does

not recommend any modelling languages, methodologies, or standards. In-
stead, IEEE 1471 provides, in the terms of a ‘recommended practice’, a

number of valuable concepts and terms of reference, which reflect the

‘generally accepted trends in practice for architecture description’ and

which ‘codify those elements on which there is consensus’.

Mission

SystemEnvironment

Stakeholder

Architecture

Architectural

Description
Rationale

ViewViewpointConcern

Library

Viewpoint
Model

aggregates

1..*
consists of

1..*

participates in

1..*

establish methods for

1..*

has source

0..1

conforms to

used to

cover 1..*

provides

participates

in

organized

by 1..*
selects

1..*identifies

1..*

is addressed

to 1..*

has

1..*

identifies

1..*

has

1..*

has an

is important

to 1..*

described

by 1

fulfills

1..*

inhabits

influences

Mission

SystemEnvironment

Stakeholder

Architecture

Architectural

Description
Rationale

ViewViewpointConcern

Library

Viewpoint
Model

aggregates

1..*
consists of

1..*

participates in

1..*

establish methods for

1..*

has source

0..1

conforms to

used to

cover 1..*

provides

participates

in

organized

by 1..*
selects

1..*identifies

1..*

is addressed

to 1..*

has

1..*

identifies

1..*

has

1..*

has an

is important

to 1..*

described

by 1

fulfills

1..*

inhabits

influences

Fig. 2.4. Conceptual model of architecture description (based on IEEE Computer
Society 2000).

Methods and Frameworks 23

First of all, the standard gives a set of definitions for key terms such as

acquirer, architect, architecture description, architectural models, architec-

ture, life cycle model, system, system stakeholder, concerns, mission, con-
text, architectural view, architectural viewpoint. As essential ideas we note

a clear separation between an architecture and its architecture descriptions

(defined as means to record architectures), and the central role of the rela-
tionship between architectural viewpoint and architectural view. The stan-

dard also provides a conceptual framework, which is meant:

− to explain how the key terms relate to each other in a conceptual model

for architecture description (this model is shown in Fig. 2.4 and uses the
UML notation for class diagrams (see also Sect. 2.3.5));

− to explain the role of the stakeholders in the creation and use of an ar-

chitecture description;

− to provide a number of scenarios for the architectural activities during

the life cycle: architectures of single systems, iterative architecture for

evolutionary systems, architecture for existing systems, and architec-
tural evaluation.

Furthermore, the standard gives six architecture description practices:

− Architectural documentation referring to identification, version, and

overview information.

− Identification of the system stakeholders and of their concerns, estab-

lished to be relevant to the architecture.

− Selection of architectural viewpoints, containing the specification of

each viewpoint that has been selected to organise the representation of

the architecture and the reasons for which it was selected.

− Architectural views corresponding to the selected viewpoints.

− Consistency among architectural views.

− Architectural rationale for the selection of the current architecture from

a number of considered alternatives.

IEEE 1471 also provides a number of relevant architectural viewpoints to-

gether with their specifications in terms of concerns, languages, and mod-

elling and analysis methods (see Annex D of the standard). It is important
to note that architecture descriptions that are compliant with IEEE 1471

can be used to meet the requirements of other standards, like the Reference

Model of Open Distributed Processing (described in Sect. 2.2.6).

24 State of the Art

2.2.3 The Zachman Framework

In 1987, John Zachman introduced the first and best-known enterprise ar-

chitecture framework (Zachman 1987), although back then it was called
‘Framework for Information Systems Architecture’. The framework as it

applies to enterprises is simply a logical structure for classifying and or-

ganising the descriptive representations of an enterprise that are significant

to the management of the enterprise as well as to the development of the
enterprise’s systems.

The framework (Fig. 2.5) in its most simple form depicts the design ar-

tefacts that constitute the intersection between the roles in the design proc-
ess: that is, owner, designer, and builder; and the product abstractions: that

is, what (material) it is made of, how (process) it works and where (geome-

try) the components are relative to one another. Empirically, in the older
disciplines, some other ‘artefacts’ were observable that were being used

for scoping and for implementation purposes. These roles are somewhat

arbitrarily labelled planner and subcontractor and are included in the

framework graphic that is commonly exhibited.

Scope

(contextual)

Enterprise model

(conceptual)

System model

(logical)

Technology model

(physical)

Detailed representations

(out of context)

Planner

Owner

Designer

Builder

Subcontractor

Data Function Network People Time Motivation

What? How? Where? Who? When? Why?

Fig. 2.5. The Zachman Framework (Zachman 1987).

From the very inception of the framework, some other product abstrac-

tions were known to exist because it was obvious that in addition to what,

how, and where, a complete description would necessarily have to include
the remaining primitive interrogatives: who, when and why. These three

additional interrogatives would be manifest as three additional columns of

models that, in the case of enterprises, would depict: who does what work,
when do things happen, and why are various choices made?

Advantages of the Zachman framework are that it is easy to understand,

it addresses the enterprise as a whole, it is defined independently of tools

Methods and Frameworks 25

or methodologies, and any issues can be mapped against it to understand

where they fit. An important drawback is the large number of cells, which

is an obstacle for the practical applicability of the framework. Also, the re-
lations between the different cells are not that well specified. Notwith-

standing these drawbacks, Zachman is to be credited with providing the

first comprehensive framework for enterprise architecture, and his work is
still widely used.

2.2.4 The Open Group Architecture Framework

The Open Group Architecture Framework (TOGAF) originated as a ge-

neric framework and methodology for development of technical architec-
tures, but evolved into an enterprise architecture framework and method.

Version 8 of TOGAF (The Open Group 2002) is called the ‘Enterprise

Edition’ and is dedicated to enterprise architectures.
TOGAF has four main components:

− A high-level framework, based on some of the key concepts and a meth-

odology called the Architecture Development Method (ADM). The

framework considers an overall enterprise architecture as composed of

four closely interrelated architectures: Business Architecture,
Data/information Architecture, Application Architecture, and Technol-

ogy (IT) Architecture. The ADM is considered to be the core of

TOGAF, and consists of a stepwise cyclic approach for the development
of the overall enterprise architecture.

− The TOGAF Enterprise Continuum, which comprises the TOGAF

Foundation Architecture (that contains the Technical Reference Model,

The Open Group's Standards Information Base (SIB), and The Building
Blocks Information Base (BBIB)) and the Integrated Information Infra-

structure Reference Model. The central idea behind the Enterprise Con-

tinuum is to illustrates how architectures are developed across a contin-

uum ranging from foundational architectures, through common systems
architectures, and industry-specific architectures, to an enterprise’s own

individual architecture.

− The TOGAF Resource Base, a set of tools and techniques available for

use in applying TOGAF and the TOGAF ADM (architecture views,
business scenarios, ADML, case studies, other architecture frameworks,

a mapping of TOGAF to the Zachman framework, etc.).

26 State of the Art

E
n

te
rp

ri
s

e
 C

o
n

ti
n

u
u

m

Resource Base

Technical

RM

Standards

Information

Base

Building

Blocks

Information

Base

Integrated Information Infrastructure
Reference Model

T
O

G
A

F

F
o

u
n

d
a
ti

o
n

A
r
c
h

it
e
c
tu

r
e

Architecture Development Method

Target Architectures

Fig. 2.6. TOGAF (based on The Open Group 2002).

The main components of the TOGAF framework are depicted in Fig. 2.6.

Apart from these components, TOGAF identifies a number of views,

which are to be modelled in an architecture development process. The ar-
chitecture views, and corresponding viewpoints, fall into the following

categories (the TOGAF taxonomy of views is compliant with the IEEE

1471 standard):

− Business Architecture Views, which address the concerns of the users of

the system, and describe the flows of business information between peo-

ple and business processes (e.g., People View, Process View, Function

View, Business Information View, Usability View, Performance View).

− Engineering Views, addressing the concerns of system and software en-

gineers responsible for developing and integrating various components
of the system (e.g., Security View, Software Engineering View, Data

View, System Engineering View, Communications Engineering View).

− Enterprise Manageability Views, addressing the concerns of systems

administrators, operators, and managers.

− Acquirers Views, addressing the concerns of procurement personnel re-

sponsible for acquiring the commercial off-the-shelf (COTS) software

and hardware to be included in the system (e.g., The Building Blocks

Cost View, The Standards View). These views typically depict building

Methods and Frameworks 27

blocks of the architecture that can be purchased, and the standards that

the building blocks must adhere to.

2.2.5 OMG’s Model-Driven Architecture

The Model-Driven Architecture (MDA) (Object Management Group Ar-

chitecture Board 2001, Frankel 2003) aims to provide an open, vendor-

neutral approach to interoperability. It builds upon the Object Management

Group’s modelling standards: the Unified Modeling Language (UML, see
also Sect. 2.3.5), the Meta Object Facility (MOF), and the Common Ware-

house Meta-model (CWM). Platform-independent application descriptions

built with these standards can be realised using different open or proprie-
tary platforms, such as CORBA, Java, .NET, XMI/XML, and Web ser-

vices.

Currently, the MDA paradigm is fundamentally changing the way in
which software is developed. MDA wants to raise the level of abstraction

at which software solutions are specified by defining a framework sup-

ported by a collection of standards that sets a standard for generating code

from models and vice versa. Now, MDA-based software development
tools already support the specification of software in UML instead of in a

programming language like Java.

Computation

Independent Model

(CIM)

Platform

Independent Model

(PIM)

Platform

Specific Model

(PSM)

m
a
p
p
in
g

m
a
p
p
in
g

m
a
p
p
in
g

m
a
p
p
in
g

Business model

Domain model

Business requirements

UML model for a J2EE

platform

BPMN Model independent

of workflow engine

UML model independent

of computing platform

Fig. 2.7. MDA framework.

28 State of the Art

Recently, OMG has extended the focus of MDA to the Computation-In-

dependent Model (CIM) layer, in which the business aspects of a company

are covered. MDA now comprises three abstraction levels with mappings
between them (see Fig. 2.7):

1. The requirements for the system are modelled in a Computation-

Independent Model (CIM) describing the situation in which the system
will be used. Such a model is sometimes called a domain model or a

business model. It hides much or all information about the use of auto-

mated data processing systems.

2. The Platform-Independent Model (PIM) describes the operation of a
system while hiding the details necessary for a particular platform. A

PIM shows that part of the complete specification that does not change

from one platform to another.
3. A Platform-Specific Model (PSM) combines the specifications in the

PIM with the details that specify how that system uses a particular type

of platform.

UML is endorsed as the modelling language for both PIMs and PSMs. At

the CIM level. A language for business process specification has already

been published, and languages for the description of business rules and

business models are currently being developed. Just like UML, these new
languages will be developed within the MDA framework. These develop-

ments will make MDA just as relevant for enterprise architecture as it is

now for software development.
One of the key features of the MDA is the notion of mapping. A map-

ping is a set of rules and techniques used to modify one model to get an-

other model. In certain restricted situations, a fully automatic transforma-
tion from a PIM to a PSM may be possible, and software development

tools will support these automated mappings. To what extent automation

of mappings between CIMs and PIMs is feasible is still a topic of research.

If these mappings are performed in a predefined (formal) way, relations
between models of different abstraction levels can be assured.

The Meta Object Facility (MOF) is a standard for repositories that plays

a central role in the MDA framework. An MOF-compliant repository
makes it possible to manage models in an integrated fashion, even when

the models are expressed in different languages. In order to make a reposi-

tory effective for EA, it must be possible to model relations between mod-

els in the repository. MOF in itself does not offer a solution for this, but
models in a modelling language like ArchiMate can be added in order to

model these relations. In addition to MOF, OMG is developing QVT (Que-

ries, Views, and Transformations), which will address the way mappings
are achieved between models whose languages are defined using MOF and

Methods and Frameworks 29

will define a standard way of querying MOF models, and creating views of

these models.

These developments give a perspective of a set of domain-specific lan-
guages that cover the complete enterprise in an integrated and consistent

way. We expect that in a few years’ time the MDA framework and MOF

will be as important for enterprise architecture as these standards are now
for software development.

2.2.6 Other Frameworks

DoDAF/C
4
ISR: The Command, Control, Communications, Computers,

Intelligence, Surveillance, and Reconnaissance (C
4
ISR) Architecture

Framework (C4ISR Architecture Working Group 1997) was originally de-

veloped in 1996, for the US Department of Defense, to ensure a common

unifying approach for the commands, military services, and defence agen-
cies to follow in describing their various architectures. A new version of

the framework, now titled Department of Defense Architecture Framework

(DoDAF), was released in August 2003. Although DoDAF has a rather

specific target, it can be extended to system architectures that are more
general. DoDAF sees the architecture description as an integration of three

main views: operational view, system view, and technical view. A number

of concepts and fundamental definitions (e.g., architecture, architecture de-
scription, roles, and interrelationships of the operational, systems, and

technical architecture views) are provided. Some framework-compliant

guidelines and principles for building architecture descriptions (including
the specific product types required for all architecture descriptions), and a

Six-Step Architecture Description procedure, complement them.

RM-ODP: The Reference Model for Open Distributed Processing (RM-
ODP) is an ISO/ITU Standard (ITU 1996) which defines a framework for

architecture specification of large distributed systems. The standard aims

to provide support for interworking, interoperability, portability and distri-
bution, and therefore to enable the building of open, integrated, flexible,

modular, manageable, heterogeneous, secure, and transparent systems (see

also Putman 1991). The standard has four parts:

− Part 1: Reference, containing a motivational overview of the standard

and its concepts (ITU 1996).

− Part 2: Foundations, defining the concepts, the analytical framework

for the description of ODP systems, and a general framework for as-

sessment and conformance (ITU 1995a).

30 State of the Art

− Part 3: Architecture, describing the ODP framework of viewpoints for

the specification of ODP systems in different viewpoint languages (ITU

1995b). It identifies five viewpoints on a system and its environment:

enterprise, information, computation, engineering, and technology.

− Part 4: Architectural semantics, showing how the modelling concepts

from Part 2 and the viewpoint languages from Part 3 can be comple-

mented in a number of formal description techniques, such as LOTOS,

Estelle, SDL, and Z (ITU 1997).

GERAM: The Generic Enterprise Reference Architecture and Methodol-

ogy (GERAM) (IFIP-IFAC Task Force 1999) defines the enterprise-
related generic concepts recommended for use in enterprise engineering

and integration projects. These concepts can be categorised as:

− Human-oriented concepts to describe the role of humans as an integral

part of the organisation and operation of an enterprise and to support

humans during enterprise design, construction, and change.

− Process-oriented concepts for the description of the business processes

of the enterprise;

− Technology-oriented concepts for the description of the supporting

technology involved in both enterprise operation and enterprise engi-

neering efforts (modelling and model use support).

The model proposed by GERAM has three dimensions: the life cycle di-

mension, the instantiation dimension allowing for different levels of con-

trolled particularisation, and the view dimension with four views: Entity

Model Content view, Entity Purpose view, Entity Implementation view,
and Entity Physical Manifestation view. Each view is further refined and

might have a number of components.

Nolan Norton Framework (Zee, et al. 2000): This framework is the result

of a research project of the Nolan Norton Institute (which involved 17

Dutch large companies) on current practice in the field of architectural de-
velopment. Based on the information collected from companies the authors

have defined a five-perspective vision of enterprise architecture:

− Content and goals: which type of architecture is developed, what are its

components and the relationships between them, what goals and re-

quirements has the architecture to meet? More precisely, this perspec-
tive consists of five interconnected architectures (they correspond to

what we have called architectural views): product architecture, process

architecture, organisation architecture, functional information-
architecture, and technical information architecture.

Architecture Languages 31

− Architecture development process: what are the different phases in the

development of an architecture, what is their sequence and what com-

ponents have to be developed in each phase?

− Architecture process operation: what are the reasons for the change,

what information is needed, and where do the responsibilities lie for de-
cision making?

− Architectural competencies: what level of expertise should the organisa-

tion reach (and how) in order to develop, implement, and use an archi-

tecture?

− Cost/Benefits: what are the costs and benefits of developing a new ar-

chitecture?

2.3 Architecture Languages

At the moment, there are no modelling languages that are specifically
aimed at describing enterprise architectures. Only in sub-domains such as

business process modelling and software design can we find established

languages. For software modelling, UML (described in Sect. 2.3.5) is of

course the single dominant language. In organisation and process model-
ling, on the other hand, a multitude of languages are in use: there is no

standard for models in this domain.

Here, we describe a number of languages for modelling business and IT
We do not describe ‘languages’ that are merely abstract collections of con-

cepts, such as the RM-ODP viewpoint languages, but focus on languages

that either find widespread use or have properties that are interesting from
the perspective of our goals in developing an enterprise architecture lan-

guage.

2.3.1 IDEF

IDEF is the name of a family of languages used to perform enterprise mod-
elling and analysis (see http://www.idef.com/ and Mayer et al. 1995, IDEF

1993, Menzel and Mayer 1998). The IDEF (Integrated Computer-Aided

Manufacturing (ICAM) DEFinition) group of methods have a military

background. Originally, they were developed by the US Air Force Pro-
gram for Integrated Computer Aided Manufacturing (ICAM). The num-

bers of participants in the meetings of the IDEF user group are evidence of

the widespread usage of IDEF.

32 State of the Art

Currently, there are 16 IDEF methods. Of these methods, IDEF0,

IDEF3, and IDEF1X (‘the core’) are the most commonly used. Their scope

covers:

− Functional modelling, IDEF0: The idea behind IDEF0 is to model the

elements controlling the execution of a function, the actors performing

the function, the objects or data consumed and produced by the func-

tion, and the relationships between business functions (shared resources
and dependencies).

− Process modelling, IDEF3: IDEF3 captures the workflow of a business

process via process flow diagrams. These show the task sequence for

processes performed by the organisation, the decision logic, describe
different scenarios for performing the same business functions, and en-

able the analysis and improvement of the workflow.

− Data modelling, IDEF1X: IDEF1X is used to create logical data models

and physical data models by the means of logical model diagrams, mul-

tiple IDEF1X logical subject area diagrams, and multiple physical dia-
grams.

Perform

Activity
Input Output

Constraint

Mechanism

(Resource)

Fig. 2.8. IDEF0 representation.

There are five elements to the IDEF0 functional model (see Fig. 2.8):
the activity (or process) is represented by boxes, inputs, outputs, con-

straints, or controls on the activities, and mechanisms that carry out the ac-

tivity. The inputs, control, output and mechanism arrows are also referred

to as ICOMs. Each activity and the ICOMs can be decomposed (or ex-
ploded) into more detailed levels of analysis. The decomposition mecha-

nism is also indicated as a modelling technique for units of behaviour in

IDEF3.
The IDEF3 Process Description Capture Method provides a mechanism

for collecting and documenting processes. There are two IDEF3 descrip-

tion modes: process flow diagrams and object state transition network dia-

grams. A process flow description captures knowledge of ‘how things
work’ in an organisation, e.g., the description of what happens to a part as

Architecture Languages 33

it flows through a sequence of manufacturing processes. The object state

transition network description summarises the allowable transitions an ob-

ject may undergo throughout a particular process. The IDEF3 term for
elements represented by boxes is a Unit Of Behaviour (UOB). The arrows

(links) tie the boxes (activities) together and define the logical flows. The

smaller boxes define junctions that provide a mechanism for introducing
logic to the flows.

The IDEF family provides support for the modelling of several architec-

tural views. However, there are no communication mechanisms between

models. The fact that they are isolated hinders the visualisation of all mod-
els as interrelated elements of an architectural system. This also means that

a switch between views is not possible.

IDEF is widely used in the industry. This indicates that it satisfies the
needs of the users within acceptable limits. The IDEF family is subject to a

continuous process of development and improvement. Still, IDEF0,

IDEF1X, and IDEF3 are rather stable and rigid languages, and IDEF0 and
IDEF1X have been published as standards of the National Institute of

Standards and Technology.

2.3.2 BPMN

The Business Process Modelling Notation (BPMN) is one of the standards
being developed by the Business Process Management Initiative (BPMI).

BPMI is a not-for-profit organisation, which states as its goals: (1) the

specification of open standards for process design, and (2) the support of
suppliers and users of business process management techniques and tools.

Many organisation involved in business process modelling and manage-

ment are involved in the BPMI activities. Other developments by BPMI

include the Business Process Modelling Language (BPML), an XML-
based meta-language for the exchange of business process models, and

BPQL, a business process query language.

The BPMN standard (Business Process Management Initiative 2003)
specifies a graphical notation that is to serve as a common basis for a vari-

ety of business process modelling and execution languages. Mappings

from BPMN to, among others, BPML and BPEL4WS (Business Process

Execution Language for Web Services) have been defined. Version 1.0 of
the BPMN specification appeared in August 2003. Examples of business

process notations that have been reviewed for this are UML Activity Dia-

grams, UML EDOC Business Processes, IDEF, ebXML BPSS, Activity-
Decision Flow (ADF) Diagrams, RosettaNet, LOVeM, and Event Process

Chains (EPCs).

34 State of the Art

A
rc
h
iS
u
ra
n
c
e

Registration Acceptance Valuation Payment

C
li
e
n
t

C
li
e
n
t

Submit

claim

ClaimClaim

Receive

decision

1) send

damage form

2) send

notification

Fig. 2.9. Example model in BPMN.

As the name already indicates, BPMN is restricted to process modelling;
applications or infrastructure are not covered by the language. The main

purpose of BPMN is to provide a uniform notation for modelling business

processes in terms of activities and their relationships (Fig. 2.9).

Currently, BPMN only defines a concrete syntax, i.e., a uniform
(graphical) notation for business process modelling concepts. However,

there is a formal mapping to the XML-based business process execution

language BPEL4WS. A formal meta-model for BPMN does not (yet) exist.

2.3.3 Testbed

Testbed is a business modelling language and method originally developed

by the Telematica Instituut together with a consortium of companies. It is

intended for business process and organisation modelling and its target us-
ers are mostly business consultants; consequently, the language lacks the

architectural perspective of information systems and the concepts related

to this. The company BiZZdesign now markets the Testbed software and
method and markets the BiZZdesigner modelling toolset (formerly Testbed

Studio) (BiZZdesign 2004). Testbed is currently used in a number of large

Dutch companies and government institutes.

Testbed recognises three aspect domains:

− the actor domain, which describes the resources for carrying out busi-

ness activities;

Architecture Languages 35

− the behaviour domain, which describes the business processes per-

formed by the resources;

− the item domain, which describes the data objects handled by business

processes.

The three domains in Testbed can also be seen as specific types of view-
points. It is important to note that a complete model always contains repre-

sentations of all these domains. Moreover these representations are not iso-

lated from each other and they communicate via several mechanisms.

Claim Notification of rejection Notification of acceptance Payment

receive
claim

process
claim

reject
claim

submit
notification

pay

Fig. 2.10. Example of a business process model in Testbed.

Testbed is a graphical language. Fig. 2.10 shows an example behaviour

model. It has a formal description of its meta-model (see Eertink et al.

1999). The purpose of this meta-model is to provide an abstract representa-
tion for the language syntax. Apart from this, process models are endowed

with a number of operational semantics, having different purposes such as

stepwise simulation, model checking, and quantitative analysis.
A spin-off of Testbed is the language NEML (Networked Enterprise

Modelling Language), which focuses on interorganisational e-business

processes in networks of organisations (Steen et al. 2002). In addition to

the domains of Testbed, NEML supports the function and role domains
and defines a number of supplementary concepts (and corresponding

graphical notations) such as flow and transfer.

2.3.4 ARIS

ARIS (‘Architecture of Integrated Information Systems’, Scheer 1994) is a

well-known approach to enterprise modelling. Although ARIS started as

the academic research of Prof. A.W. Scheer, it has an explicit industrial

background. It is not a standard, but it is sold very well and therefore
widespread. In addition to the high-level architectural framework, ARIS is

36 State of the Art

a business modelling method, which is supported by a software tool

(‘ARIS Toolset‘). ARIS is intended to serve various purposes: documenta-
tion of existing business process types, blueprint for analysing and design-

ing business processes, and support for the design of information systems.

The tool is intended for system designers.
To model business processes within an enterprise model, ARIS provides

a modelling language known as event-driven process chains (EPCs). An

EPC is an ordered graph of events and functions. It provides various con-
nectors that allow alternative and parallel execution of processes. Fig. 2.11

shows an example of a business process model made in ARIS and also pre-

sents the graphical notation used in these models. The main concepts de-
fined in ARIS are: events, functions, control flows, logical operators, or-

ganisational units, interactions, output flows, environmental data, outputs,

human output, message, goal, machine, computer hardware, application
software.

Manufac-

turing Plan

Manufac-

turing Plan

(Supplier)

Order
Processed

Item

Completed

Order

Documents

Manufacture

Shop

Floor

Work High

Quality

PPC

System

Work

station

Control

CPU
Operator Machine

Material

Item

Schedule

Completed
Item

Manufac-

turing Plan

Manufac-

turing Plan

(Supplier)

Order
Processed

Item

Completed

Order

Documents

Manufacture

Shop

Floor

Work High

Quality

PPC

System

Work

station

Control

CPU
Operator Machine

Material

Item

Schedule

Item

Manufac-

turing Plan

Manufac-

turing Plan

(Supplier)

Order
Processed

Item

Completed

Order

Documents

Manufacture

Shop

Floor

Work High

Quality

PPC

System

Work

station

Control

CPU
Operator Machine

Material

Item

Schedule

Item

Manufac-

turing Plan

Manufac-

turing Plan

(Supplier)

Order
Processed

Item

Completed

Order

Documents

Manufacture

Shop

Floor

Work High

Quality

PPC

System

Work

station

Control

CPU
Operator Machine

Material

Item

Schedule

Completed
Item

Schedule

Item

Fig. 2.11. Events, functions and control flows in ARIS.

The ARIS Toolset includes various editors that can be used to design

and edit several types of diagrams. The most important are value-added

chain diagrams, organisational charts, interaction diagrams, function trees,
and EPCs. While there is a formal definition of the syntax of EPCs, they

lack a precise definition of their semantics. The semantics of EPCs is given

only roughly (in verbal form) in the original publication by Scheer (1992).
A comprehensive discussion of the semantic shortcomings of EPCs can be

found in Rittgen (2000). This is also the case for the corresponding object

models which are specified in a rudimentary meta-model. For this reason,

Architecture Languages 37

ARIS lacks a solid formal foundation and is of limited use for the design

of (application) architectures.

The graphical notation of ARIS is unambiguous, but rather extensive,
with quite a learning curve. While ARIS allows for various perspectives on

the enterprise (the data view, the control view, the process/function view,

and the organisation view), the integration of these aspects is somewhat
lacking. Therefore, the tool does not guarantee the overall integrity of in-

terrelated models. The tailorability of ARIS is limited to business model-

ling, and more precisely to organisational, functional, and process model-

ling; ARIS is not extensible.

2.3.5 Unified Modeling Language

The Unified Modeling Language (UML) (Booch et al. 1999) is currently

the most important industry-standard language for specifying, visualising,
constructing, and documenting the artefacts of software systems. The lan-

guage’s development is managed by the Object Management Group

(OMG). It emerged from the combination of three existing notations,

Booch, OMT, and Objectory, authored by the ‘three amigos’ Booch, Rum-
baugh, and Jacobson. Other influences came from Harel’s state charts and

Shlaer-Mellor’s object life cycles.

UML is intended to be used by system designers. Consequently, UML
models are only clear to those who have a sound background in computer

science, in particular in object orientation (see Fowler and Scott 1999).

However, leaving out the more technical details, UML models should be
sufficiently understandable for illustrative and explanatory purposes to

business engineers and organisation specialists. Although UML was origi-

nally developed for the design of object-oriented software, its use has ex-

panded to other areas, including architecture modelling. However, the
most widely used version of the language, v1.4, lacks native support for

many architectural concepts. In its latest version, UML 2.0 (Object Man-

agement Group 2003a, 2003b), several architectural concepts are added,
but this new version is not commonly supported yet.

Through object orientation, UML covers all possible modelling domains

one can think of. From the point of view of UML the world consists of

only one kind of component-like thing, called object, together with a con-
nection-like thing, called link. Examples of objects are persons, organisa-

tional units, products, projects, archives, and machines. The objects consist

of a static part and a dynamic part. The dynamic part is a description of
how such an object does what it should do.

38 State of the Art

The links reflect any kind of connection or relation between objects,

varying from concrete (‘is-boss-of’) to abstract (‘might-be-relevant-for’).

In this way links can express relations, connections, dependencies, rele-
vancies of a physical, logical, temporal, structural, behavioural, similar, or

complementary character, to mention a few examples.

UML is a disturbingly rich combination of 13 sublanguages each having
its own (sub)scope of the complete UML scope, and each with its own dia-

gram to model a specific aspect of a (software) system. The 13 diagrams

can be grouped in three categories:

− structure: package diagrams, class diagrams, object diagrams, composite
structure diagrams;

− behaviour: use case diagrams, state diagrams, sequence diagrams, tim-

ing diagrams, communication diagrams, activity diagrams, interaction

overview diagrams;

− implementation: component diagrams, deployment diagrams.

Each diagram type describes a system or parts of it from a certain point of
view, and contains its own symbols. However, the diagram types and

UML meta-model are interrelated; no strict separation between views and

meta-model concepts has been made. Consequently, the relations between
modelling concepts in different diagrams are often ill-defined. We will not

show the notation of all these diagrams and modelling concepts here; a

good overview is given in Fowler and Scott (1999).

Moreover, apart from the package, component, and deployment dia-
grams, each of the other languages is in itself a disturbingly rich combina-

tion of visual building blocks. Some of these languages have large mutual

overlap, e.g., activity diagrams and state chart diagrams. The advantage of
such richness is the expressiveness of the language; a serious disadvantage

is the readability and accessibility of the language. The large numbers of

symbols and diagrams make the learning curve of UML pretty steep for
new users.

Next to the graphical notation, UML contains the Object Constraint

Language (OCL), a textual language for specifying constraints on model

elements. The meaning of UML diagrams is not always very intuitive and
sometimes requires quite careful study. For an experienced UML user,

however, the language is not too difficult to use.

To extend the modelling vocabulary or give distinctive visual cues to
certain kinds of abstractions that often appear, UML offers three kinds of

mechanisms:

− A ‘stereotype’ is an extension of the vocabulary of UML that allows the

creation of new kinds of building blocks, based on existing ones. A

Architecture Languages 39

stereotype is used to define specialisations of existing elements of UML

meta-model.

− A ‘tagged value’ is an extension of the properties of a UML element

that allows the creation of new information in that element’s specifica-
tion. Tagged values can be added to all existing meta-model elements.

− UML offers the possibility to define so-called ‘profiles’ attuned to cer-

tain problem domains. A profile is a kind of dialect of the original mod-

elling language, better suited to reflect the characteristics of a certain
problem domain. A profile uses tagged values and stereotypes to ex-

press a specific and precise model.

A profile that is particularly relevant for enterprise architecture is the pro-
file for Enterprise Distributed Object Computing (EDOC). Its goal is to

provide architecture and modelling support for collaborative or Internet

computing, with technologies such as Web services, Enterprise Java

Beans, and Corba components. The EDOC profile was adopted by the
OMG as a standard in November 2001 (Object Management Group 2002)

and will provide model-driven development of enterprise systems based on

the Model-Driven Architecture (see Sect. 2.2.5). The EDOC profile pro-
vides a business collaboration architecture, a technology-independent

business component architecture, and modelling concepts for describing

business processes, applications, and infrastructure.

Although these extension mechanisms give UML considerable flexibil-
ity, they also are a weak point of the language. Stereotypes, especially

when applied too much, can confuse readers who are not familiar with

them. In such cases stereotypes take away one of the strong points of
UML, which is standardisation.

UML partially has a formal basis. What it is missing is mainly seman-

tics and consistency in particular. As this is a topic of ongoing and inten-
sive research, one might expect substantial improvements concerning se-

mantics and consistency within the not very far future. Semantics for

individual diagram types exist, in a more or less formal manner. However,

a formalised integrated semantics is still lacking (Harel and Rumpe 2004).
The lack of an integrated semantics makes it difficult to provide analyti-

cal support for UML. Analysis is limited to what is permitted within a sin-

gle diagram, and since the semantics of UML has not been specified very
well in the standard, rigorous analysis techniques are difficult to define.

Perhaps UML’s most important asset is its broad tool support: there are

many commercial as well as public domain modelling environments. As
UML is so large, most of these do not (yet) cover everything, and support

especially for the newest version, UML 2.0, is still lacking. As many of

these environments offer means to translate a model into executable code,

40 State of the Art

e.g., Java, some form of analysis is being provided: through the execution.

Often also other means of analysis and verification are being provided,

through partial consistency checking, or forms of animation or explicit
translation to a different domain where a particular verification can be per-

formed.

2.3.6 Architecture Description Languages

The term ‘Architecture Description Language‘ (ADL) is used to refer to a
(usually formal) language to describe a software architecture in rather gen-

eral terms. A wide variety of ADLs exist, with several differences in the

exact concepts that they offer: some focus on structural aspects of an archi-
tecture, while others pay more attention to the dynamic aspects. In general,

their concepts are defined at a rather generic level: although they are usu-

ally intended for modelling the application level, the use of the concepts is
not restricted to this. As a result of this high abstraction level, constructing

and reading ADL specifications may be difficult for non-expert users. An

advantage is the precise definition and formal foundation of the languages,

which may make them suitable as an underlying language for more spe-
cific concepts. In Medvidovic and Taylor (2000) the basics of ADLs are

described, and a large number of ADLs are compared.

Although the concepts used in ADLs are very generic, they are mainly
applied in the field of software architecture. In addition to ADLs with a

general applicability, there are ADLs with a much more specific applica-

tion area (e.g., MetaH, for the guidance, navigation, and control domain).
Because of the formal nature and high abstraction level of the concepts,

ADLs are mainly suitable for users with a technical background. They are

unsuitable as a means for communication at the organisational level.

In principle, ADL concepts are sufficiently flexible to create models in
several domains. However, they are mainly applied, and are most suitable,

for the application domain (i.e., to describe software architectures). As

Acme (1998) is claimed to be suitable as a general architecture description
and interchange language, we believe its concepts can be used as a repre-

sentative for ADLs. The core concepts are:

− component;

− connector;

− system (a configuration of components and connectors);

− port (a point of interaction with a component);

− role (a point of interaction with a connector);

− representation (used to model hierarchical composition);

Service-Oriented Architecture 41

− rep-map (which maps a composite component or connector’s internal

architecture to elements of its external interface).

ADLs like Acme generally have an academic background, and limited us-

age. However, some of these concepts have now been included in UML
2.0. In this way, these concepts are made available to a large user base and

will be supported by a wide range of software tools.

2.3.7 Suitability for Enterprise Architecture

In the previous sections, we have given an overview of current languages
for modelling in the area of organisations, business processes, applications,

and technology. It is clear that none of these has succeeded in becoming

‘the language’ that can cover all domains. In general, there are a number of
aspects on which almost all of these languages score low:

− The relations between domains (views) is poorly defined, and the mod-

els created in different views are not further integrated.

− Most languages have a weak formal basis and lack a clearly defined se-

mantics.

− Most languages miss the overall architectural vision and are confined to

either the business or the application and technology sub-domains.

In contrast to organisation and business process modelling, for which there

is no single dominant language, in modelling applications and technology

UML has become a true world standard. UML is the mainstream model-
ling approach within ICT, and its use is expanding into other areas. This

makes UML an important language not only for modelling software sys-

tems, but also for business processes and for the general business architec-
ture. However, UML is not readily accessible and understandable for man-

agers and business consultants; therefore, special visualisations and views

of UML models should be provided. Given the importance of UML, other
modelling languages will likely provide an interface or mapping to it.

2.4 Service-Oriented Architecture

The emergence of the service-oriented computing (SOC) paradigm and

Web services technology, in particular, has aroused enormous interest in
service-oriented architecture (SOA). Probably because such hype has been

created around it, there are a lot of misconceptions about what SOA really

is. Numerous Web services evangelists make us believe that if you could
divide the world into service requestors, service providers and a service

42 State of the Art

registry, you would have an SOA (e.g., Ferris and Farrell 2003). Others

emphasise that SOA is a way to achieve interoperability between distrib-

uted and heterogeneous software components, a platform for distributed
computing (e.g., Stevens 2002).

Even though dynamic discovery and interoperability are important bene-

fits of Web services, a purely technological focus would be too limited and
would fail to appreciate the value of the (much more general) service con-

cept. SOA represents a set of design principles that enable units of func-

tionality to be provided and consumed as services. The interesting thing is

that the service concept applies equally well to the business as it does to
software applications. Services provide the ‘units of business’ that repre-

sent value propositions within a value chain or within business processes.

This essentially simple concept can and should be used not just in software
engineering, but also at all other levels of the enterprise architecture, to

achieve ultimate flexibility in business and IT design.

The idea of systems (applications or components) delivering services to
other systems and their users has really caught on in software engineering.

Moreover, in other relevant disciplines there is also an increasing focus on

services. In fact, economic development is to an increasing extent driven

by services, not only in traditional service companies but also in manufac-
turing companies and among public service providers (Illeris 1997). In the

service economy, enterprises no longer convert raw materials into finished

goods, but they deliver services to their customers by combining and add-
ing value to bought-in services. As a consequence, management and mar-

keting literature is increasingly focusing on service design, service man-

agement, and service innovation (e.g., see Fitzsimmons and Fitzsimmons
2000, or Goldstein et al. 2002).

Another upcoming area in which the service concept plays a central role

is IT service management. This discipline is aimed at improving the qual-

ity of IT services and the synchronisation of these services with the needs
of their users (van Bon 2002). The ITIL approach described in Sect. 2.1.5,

for example, puts great emphasis on services and service-level agreements.

The service concept is the result of a separation of the ‘external’ and ‘in-
ternal’ behaviour of a system. As such, it should be self-contained and

have a clear purpose from the perspective of its environment. The internal

behaviour, on the other hand, represents what is required to realise this

service. For the ‘consumers’ of a service, the internal behaviour of a sys-
tem or organisation is usually irrelevant: they are only interested in the

functionality and quality that will be provided.

Service-Oriented Architecture 43

2.4.1 Service-Oriented Technologies

Web services are a relatively young technology in full development, sus-

tained by a rapidly evolving set of industry standards. Their broad accep-
tance is guaranteed by the global status of organisations such as W3C, UN-

CEFACT, UDDI.org, OMG, and OASIS that lead the standardisation work

in this field. However, there are problems (e.g., security, interoperability,

availability, and reliability) that have not yet been completely addressed,
and therefore most of these standards should be seen as work in progress.

We are witnessing strong competition for the leading positions in the

Web services market. The list of competing companies includes big sup-
porters of Web services such as Microsoft with its .Net strategy, IBM with

its WebSphere, its ‘business on demand’ framework and its patterns for e-

business, Novell with its DENIM (Directory-Enabled Net Infrastructure
Model) cross-platform infrastructure, Sun with its ONE (Open Net Envi-

ronment), BEA Systems with its WebLogic, and many others.

A parallel development in service orientation is the ability to access ICT

resources, such as computing power, storage capacity, and devices as ser-
vices over the Internet. This development has its origin in e-science envi-

ronments (computing grids), but also has large potential for a variety of

other application areas like healthcare, education, finance, life sciences,
industry, and entertainment. The idea is that in the near future, a user or a

company can simply plug into the wall to get access to commoditised

computing and storage services. In analogy with electricity provisioning
over the ‘Power Grid’, this next-generation service infrastructure is called

the Service Grid. This will give large and small organisations access to

ICT resources currently out of reach.

For grid development the Global Grid Forum leads standardisation. The
integration with business requirements is addressed in the OGSA (Open

Grid Services Architecture) and OGSI (Open Grid Services Infrastructure)

working groups. These primarily concern basic integration of grid comput-
ing concepts with Web service technology.

The grid service developments strengthen the impact of service orienta-

tion on business architectures, because they extend the application of Web

service technology to the domain of utility computing and ASP, while its
focus on sharing of ICT resources will have additional impact on the way

ICT infrastructure services are managed within organisations.

Several tool vendors recognise the importance of integrating real-time
IT service management with operational business processes and customer

services. They provide tools that propagate events at the IT level to process

owners and customers; conversely, problem reports from users and cus-
tomers can be propagated to the IT service level. Such integration should

44 State of the Art

offer operational business–IT alignment giving insight into real-time per-

formance and service levels. These developments create a strong case for

service-oriented methods, since they apply service orientation in real-time
operational service management allowing services to be used for on-line

decision making and problem solving.

2.4.2 Relevance and Benefits for Enterprise Architecture

One might ask why we should focus on services for architecting the enter-
prise and its IT support. What makes the service concept so appealing for

enterprise architecture practice? First, there is the fact that the service con-

cept is used and understood in the different domains making up an enter-
prise. In using the service concept the business and IT people have a mutu-

ally understandable ‘language’, which facilitates their communication.

Second, service orientation has a positive effect on a number of key differ-
entiators in current and future competitive markets, i.e., interoperability,

flexibility, cost effectiveness, and innovation power.

Of course, Web services and the accompanying open, XML-based stan-

dards are heralded for delivering true interoperability at the information
technology level (Stevens 2002). However, service orientation also pro-

motes interoperability at higher semantic levels by minimising the re-

quirements for shared understanding: a service description and a protocol
of collaboration and negotiation are the only requirements for shared un-

derstanding between a service provider and a service user. Therefore, ser-

vices may be used by parties different from the ones originally perceived,
or used by invoking processes at various aggregation levels.

Interoperability and separation of internal and external behaviour pro-

vide new dimensions of flexibility: flexibility to replace or substitute ser-

vices in cases of failure, flexibility to upgrade or change services without
affecting the enterprise’s operations, flexibility to change suppliers of ser-

vices, flexibility to reuse existing services for the provision of new prod-

ucts or services. This will create new opportunities for outsourcing, render-
ing more competition and more efficient value chains.

By focusing on services, many opportunities for reuse of functionality

will arise, resulting in more efficient use of existing resources. In addition,

outsourcing and competition between service providers will also result in a
reduction of costs. From a macroscopic point of view, costs will be re-

duced as a result of more efficient distribution of services in value chains.

The ability to interoperate and collaborate with different partners, in-
cluding partners not familiar with the enterprise, provides new opportuni-

ties for innovation. Existing services can be recombined, yielding new

Service-Oriented Architecture 45

products and services, ad hoc liaisons with new partners become possible

that exploit emerging business opportunities, and newly developed ser-

vices can easily be advertised and offered all over the world, and inte-
grated in the overall service architecture.

Finally, service orientation stimulates new ways of thinking. Tradition-

ally, applications are considered to support a specific business process,
which in turn realises a specific business service. Service orientation al-

lows us also to adopt a bottom-up strategy, where the business processes

are just a mechanism for instantiating and commercially exploiting the

lower-level services to the outside world. In this view, the most valuable
assets are the capabilities to execute the lower-level services, and the busi-

ness processes are merely a means of exploitation.

Some organisations have already started to implement service-oriented
enterprise architectures, but the future will determine whether service ori-

entation really can deliver on all its promises of increased interoperability,

flexibility, and innovation power.

3 Foundations

This chapter lays down the fundamental ideas and choices on which our
approach is based. First, it identifies the needs of architects in the design,

communication, realisation, and change of enterprise architectures. It then

describes the central role of architecture models in our approach, the use of
models in communication, the relationship between models and their pres-

entation, and the formalisation of the meaning (i.e., semantics) of models.

3.1 Getting to Grips with Architectural Complexity

Companies have long recognised the need for an integrated architectural
approach, and have developed their own architecture practice. Neverthe-

less, they still experience a lack of support in the design, communication,

realisation, and management of architectures. Several needs can be catego-
rised as follows with respect to different phases in the architecture life cy-

cle:

− Design: When designing architectures, architects should use a common,

well-defined vocabulary to avoid misunderstandings and promote clear
designs. Such a vocabulary must not just focus on a single architecture

domain, but should allow for the integration of different types of archi-

tectures related to different domains. Next to a common language, archi-

tects should be supported in their design activities by providing me-
thodical support, general and organisation-specific guidelines, best

practices, drawing standards, and other means that promote the quality

of the architectures. Furthermore, to facilitate the design process, which
is iterative and requires changes and updates to architectures, support

for tracking architectural decisions and changes is desirable.

− Communication: Architectures are shared with various stakeholders

within and outside the organisation, e.g., management, system design-

ers, or outsourcing partners. To facilitate the communication about ar-
chitectures, it should be possible to visualise precisely the relevant as-

pects for a particular group of stakeholders. Especially important in this

respect is to bring about a successful communication on relations among

48 Foundations

different domains described by different architectures (e.g., processes

vs. applications), since this will often involve multiple groups of stake-

holders. Clear communication is also very important in the case of out-
sourcing of parts of the implementation of an architecture to external

organisations. The original architect is often not available to explain the

meaning of a design, so the architecture should speak for itself.

− Realisation: To facilitate the realisation of architectures and to provide

feedback from this realisation to the original architectures, links should

be established with design activities on a more detailed level, e.g., busi-

ness process design, information modelling, or software development.
Companies use different concepts and tools for these activities, and rela-

tions with these should be defined. Furthermore, integration with exist-

ing design tools in these domains should be provided.

− Change: An architecture often covers a large part of an organisation and

may be related to several other architectures. Therefore, changes to an
architecture may have a profound impact. Assessing the consequences

of such changes beforehand and carefully planning the evolution of ar-

chitectures are therefore very important. Until now, support for this has
been virtually non-existent.

3.1.1 Compositionality

In current practice, enterprise architectures often comprise many heteroge-

neous models and other descriptions, with ill-defined or completely lack-
ing relations, inconsistencies, and a general lack of coherence and vision.

The main driver behind most of the needs identified above is the complex-

ity of architectures, their relations, and their use. Many different architec-
tures or architectural views co-exist within an organisation. These architec-

tures need to be understood by different stakeholders, each at their own

level. The connections and dependencies that exist among these different

views make life even more difficult. Management and control of these
connected architectures is extremely complex. Primarily, we want to create

insight for all those that have to deal with architectures.

The standard approach to dealing with the complexity of systems is to
use a compositional approach, which distinguishes between parts of a sys-

tem, and the relations between these parts. To understand how a car func-

tions we first describe the parts of the car such as the engine, the wheels,

the air conditioning system, and then we describe the relationship among
these parts. Likewise we understand the information system of a company

as a set of systems and their relations, and we understand a company as a

set of business processes and their relations.

Getting to Grips with Architectural Complexity 49

Compositionality also plays a central role in the architectural approach.

For example, the IEEE 1471 standard defines architecture as the funda-

mental organisation of a system embodied in its components, their rela-
tionships to each other, and to the environment (together with principles

guiding its design and evolution). Moreover, compositionality also plays a

role when varying viewpoints on a system are defined. The latter type of
decompositions are usually functional, in the sense that the functionality of

an architecture is decomposed in the functionality of its parts and their re-

lations.

3.1.2 Integration of Architectural Domains

The main goal of our approach is the integration of architectural domains,

to deal with the complexity of architecture as a discipline, and to provide

insight for all those that have to deal with architectures. There are many
instances of this integration problem, of which we discuss two examples

below. These examples also play their role in the remaining chapters of

this book. In general, some integration problems can be easily solved: for
example, by using an existing standard; others are intrinsic to the architec-

tural approach and cannot be ‘solved’ in the usual sense. These hard cases

are intrinsic to the complexity of architecture, and removing the problem
would also remove the notion of architecture itself. We cannot get rid of

the integration problems; we can only develop concepts and tools to make

it easier to deal with these issues. This is illustrated by Example 1 below.

Example 1. As a first example of an integration problem, consider Fig. 3.1, which

contains several architectures. The five architectures may be models expressed in

UML, or models from cells of Zachman’s architectural framework, or any kind of

combination. For instance, there may be a company that has modelled its applica-

tions in UML and its business processes in BPMN. In all these cases, it is unclear

how concepts in one view are related to concepts in another view. Moreover, it is
unclear whether views are compatible with each other.

The integration of the architectures in Fig. 3.1 is problematic because these

five architectures are developed by distinct stakeholders with their own

concerns. Relating architectures means relating the ideas of these stake-
holders, most of which remain implicit. A consequence is that we often

cannot assume to have complete one-to-one mappings, and the best we can

ask for is that views are in some sense consistent with each other. This is
often called a problem of alignment, and the UML–BPMN example is

called a business–IT alignment problem.

50 Foundations

Process architectureProcess architecture

Application architectureApplication architecture Technical architectureTechnical architectureTechnical architecture

Information architectureInformation architecture Product architectureProduct architecture

??

??

??

??

??

Fig. 3.1. Heterogeneous architectural domains.

In the complex integration cases that involve multiple stakeholders, it is

clear that integration is a bottom-up process, in the sense that first concepts
and languages of individual architectural domains are defined, and only

then is the integration of the domains addressed. We can summarise Ex-

ample 1 by observing that the integration of architectures is hard due to the
fact that architectures are given and used in practice, and cannot be

changed. It is up to those who integrate these architectures to deal with the

distinct nature of architectural domains.
When we talk about the integration of architectural domains, we need a

language in which we can describe these domains. For example, some

sources refer to entities and relations, as in entity–relationship diagrams.
Others refer to classes and objects, like in object-oriented modelling and

software engineering. And yet others refer to concepts and instances; for

example, in the area of conceptual modelling. These abstract concepts
have been defined at a high level of abstraction, but often they also contain

some implicit assumptions. For example, entities and relations are assumed
to be finite, because databases are finite, which is not the case with con-

cepts. There are many architecture languages, some of which we have dis-

cussed in Chap. 2, but here also terminology varies.
An architecture language is not only needed for the description of inte-

grated architectures, but also a prerequisite for linking the different tools

used in the various architectural domains. Furthermore, an integrated lan-
guage facilitates the analysis of architectures across domains and the reuse

of analysis results from specific domains on an integrated level.

It would be foolish to suggest an entirely new architecture language that
is built from scratch and ignores already existing developments. In this

Getting to Grips with Architectural Complexity 51

book we therefore take a pragmatic approach, and reuse elements from

other languages, approaches, and techniques whenever possible.
When looking at everyday architectural practice, it is clear that some in-

tegration problems occur more frequently than others. A typical pattern is

that some architectural models describe the structure of an architecture at
some point in time, whereas other models describe how the architecture

changes over time. The second example that we discuss in this chapter ad-

dresses this issue.

Example 2. As a second example of an integration problem, consider the first two

viewpoints of the IEEE 1471 standard (IEEE Computer Society 2000): the struc-

tural viewpoint and the behavioural viewpoint. How are structure and behaviour

related?

The second example touches on a problem that has been studied for a long
time: the integration of structural and behavioural models. One instance of

this problem is how structural concepts like software components are re-

lated to behavioural concepts like application functions. Another area
where this issue has been studied is in formal methods and in simulation.

The enterprise modelling language described in Chap. 5 shows a strong

symmetry between the behavioural and the structural aspects. A service is
an ‘external’ reflection of the ‘internal’ behaviour that realises it, analo-

gous to the way in which an interface is an ‘external’ reflection of the ‘in-

ternal’ structure behind it. For the internal behaviour, we distinguish be-
tween individual behaviour assigned to an individual structural element

and collective behaviour assigned to a collaboration of structural elements.

In the next sections, we will go deeper into the foundations of our ap-
proach to modelling enterprise architectures, and in particular into the in-

tegration of architectures. However, just like architectural diagrams are of-

ten misinterpreted due to the fact that each stakeholder interprets the
picture in its own way, architectural concepts also are often misinterpreted.

This has led to the IEEE 1471 standard which had the ambition to resolve

these ambiguities. Despite the fact that there seems to be increasing con-
sensus on the terminology used, in practice one still finds many distinct

definitions of relevant architectural concepts, such as model, meta-model,

and view.
In this chapter we define the notions we need in the remainder of the

book. These definitions are based on several standards, most importantly

the IEEE 1471 standard, the conventions in UML, and other conventions
used in daily practice. In general, we develop a language to talk about the

integration of architectural domains, and we have to be precise as all con-

cepts have been used in other areas too, and typically are already over-

52 Foundations

loaded. In the architectural definitions we incorporate fundamental notions

of architecture; for example, that an architecture never refers to reality, but
only to some abstraction of it.

3.2 Describing Enterprise Architectures

To cope with the complexity of enterprise architecture, the representation

of the essence of an architecture in the unambiguous form of a model can
be of great value. We do not want to define the details of the individual ar-

chitectural domains themselves. That would be the task of the architecture

discipline within that particular field. Instead, we concentrate on what is
essential for enterprise architecture, and therefore we limit ourselves to the

core elements of these domains and focus especially on the relations and

interactions between them. Precise definitions and constraints will help us
to create insight into the complexity of the enterprise architecture and to

evade conflicts and inconsistencies between the different domains. For

this, we use models.
A model is an abstract and unambiguous conception of something (in

the real world) that focuses on specific aspects or elements and abstracts

from other elements, based on the purpose for which the model is created.
In this context, models are typically represented using a formalised graphi-

cal or textual language. Because of their formalised structure, models lend

themselves to various kinds of automated processing, visualisation, analy-
sis, tests, and simulations. Furthermore, the rigour of a model-based ap-

proach also compels architects to work in a more meticulous way and

helps to dispel the unfavourable reputation of architecture as just drawing

some ‘pretty pictures’.
Different stakeholders, however, have a different view of the world. Not

everyone’s needs can be easily accommodated by a single model. Let us

therefore first consider what happens if some viewer observes ‘the uni-
verse’ around him or her.

3.2.1 Observing the Universe

We assume that any viewer that perceives the world around him or her first
produces a conception, i.e., a mental representation, of that part he or she

deems relevant. The viewer cannot communicate directly about such a

conception, unless it is articulated it somehow. In other words, a concep-
tion needs to be represented. Peirce (1969a–d) argues that both the percep-

Describing Enterprise Architectures 53

tion and conception of a viewer are strongly influenced by the viewer’s in-

terest in the observed universe.
In our case, the viewer is a stakeholder of (part of) the organisational,

technical, or other systems that make up the enterprise, i.e., the universe

that the viewer observes. The conception of this universe then is the archi-
tecture of the enterprise. The representation of this architecture is an archi-

tecture description, which may contain models of the architecture, but also,

for example, textual descriptions.

enterprise

architecture

architecture

description

stakeholder

Fig. 3.2. Relationship between enterprise, stakeholder, architecture, and architec-

ture description.

The underlying relationships between stakeholder, enterprise, architec-

ture, and architecture description can be expressed in the form of a tetrahe-

dron, as depicted in Fig. 3.2, which is based on the FRISCO tetrahedron
(Falkenberg et al. 1998).

3.2.2 Concerns

So in conceiving a part of the enterprise, stakeholders will be influenced

by their particular interest in the observed enterprise, i.e., their concerns.
Note that stakeholders, as well as their concerns, may be regarded at an

aggregated as well as at an individual level. For example, a single business

manager conceiving an information system is a stakeholder. The collective
business management, however, can also be seen as a stakeholder of the

information system.

Yet concerns are not the only factors that influence a stakeholder’s con-
ception of a domain. Another important factor is the preconceptions a

stakeholder may harbour as they are brought forward by his or her social,

54 Foundations

cultural, educational, and professional background. More specifically, in

the context of system development, architects will approach a domain with
the aim of expressing the domain in terms of some set of concepts, such as

classes, activities, constraints, etc. The concepts an architect is used to us-

ing (or trained to use) when modelling some (part of a) domain, will
strongly influence the conception of that architect. As Abraham Maslow

said: ‘If the only tool you have is a hammer, you tend to see every problem

as a nail.’
We therefore presume that when architects model a domain, they do so

from a certain perspective. In general, people tend to think of the universe

(the ‘world around us’) as consisting of related elements. In our view,
however, to presume that the universe consists of a set of elements is al-

ready a subjective choice, made (consciously or not) by the viewer observ-

ing the universe. The choice being made is that ‘elements’ (or ‘things’) and
‘relations’ are the most basic concept for modelling the universe. In this

book, we will indeed make this assumption, and presume that an archi-

tect’s conception of the universe, i.e., an architecture, consists of such ele-
ments.

3.2.3 Observing Domains

Viewers may decide to zoom in on a particular part of the universe they

observe, or, to state it more precisely, they may zoom in on a particular
part of their conception of the universe, in our case the enterprise. This al-

lows us to define the notion of a domain as:

Domain: any subset of a conception (being a set of elements) of the
universe that is conceived of as being some ‘part’ or ‘aspect’ of the

universe.

In the context of (information) system development, we have a particular
interest in unambiguous abstractions from domains. This is what we refer

to as a model:

Model: a purposely abstracted and unambiguous conception of a

domain.

Note that both the domain and its model are conceptions harboured by the

same viewer. We are now also in a position to define more precisely what

we mean by modelling:

Modelling: the act of purposely abstracting a model from (what is

conceived to be) a part of the universe.

Describing Enterprise Architectures 55

For practical reasons, we will understand the act of modelling also to in-

clude the activities involved in the representation of the model by means of
some language and medium. We presume architects not only to be able to

represent (parts of) their conceptions of the enterprise, but also to be able

to represent (parts of) the perspectives they use in producing this concep-
tion. This requires architects to be able to reflect on their own working

process. When modelling a domain in terms of, say, UML class diagrams,

we presume that they are able to express the fact that they are using
classes, aggregations, associations, etc., to describe the domain being

modelled.

3.2.4 Views and Viewpoints

Very often, no stakeholder apart from perhaps the architect is interested in
the architecture in its full scope and detail. As we observed in Sect. 3.2,

different viewers have different conceptions of the universe they perceive.

Their concerns dictate which parts of an enterprise architecture they deem
relevant.

Stakeholders therefore require specific views of an architecture that fo-

cus on their concerns and leave out unnecessary information. Since we put
models central in our description of architectures, this implies that we have

to provide different views of these models to accommodate the stake-

holders’ needs.
A view is specified by means of a viewpoint, which prescribes how

views that address particular concerns of the stakeholders are constructed,

given the architecture under consideration. What should and should not be

visible from a specific viewpoint is thus entirely dependent on the stake-
holder’s concerns.

The IEEE 1471 standard (IEEE Computer Society 2000) defines views

and viewpoints as follows:

View: a representation of a system from the perspective of a related

set of concerns.

Viewpoint: a specification of the conventions for constructing and

using a view; a pattern or template from which to develop individual

views by establishing the purposes and audience for a view and the

techniques for its creation and analysis.

Simply put, a view is what you see, and a viewpoint tells from where you
are looking. For example, you might define a ‘financial viewpoint’ that

tells you how to show, say, the costs for building certain applications. Ap-

56 Foundations

plying that viewpoint to a model of the new customer relationship man-

agement (CRM) system of your company results in a financial view of that

system which shows its costs.

3.2.5 Ways of Working

Creating and using architecture models typically involves several related

‘ways of working’ (Wijers and Heijes 1990):

− A way of thinking: articulates the assumptions about the kinds of prob-

lem domains, solutions, and modellers involved.

− A way of modelling: identifies the core concepts of the language that

may be used to denote, analyse, visualise, and/or animate architecture

descriptions.

− A way of communicating: describes how the abstract concepts from the

way of modelling are communicated to human beings, e.g., in terms of a
textual or a graphical notation (syntax, style, medium).

− A way of working: structures (parts of) the way in which a system is

developed. It defines the possible tasks, including sub-tasks, and order-

ing of tasks, to be performed as part of the development process. It fur-
thermore provides guidelines and suggestions (heuristics) on how these

tasks should be performed.

− A way of supporting: the support that is offered by (possibly auto-

mated) tools for the handling (creating, presenting, modifying, etc.) of

models and views. In general, a way of supporting is supplied in the
form of some computerised tool.

− A way of using: identifies heuristics that:

• define situations, classes of stakeholders, and concerns for which a

particular model or viewpoint is most suitable;

• provide guidance in tuning the viewpoint to specific situations,

classes of stakeholders, and their concerns.

In this book, we try to give attention to each of these ‘ways’, since in our

view they are all essential to the effective use of architectures.

3.2.6 Enterprise Architecture Models

In an ideal situation, we would have a single model for an enterprise archi-
tecture, to ensure coherence and consistency between all its different parts.

In reality, such a model will probably never exist, especially when we talk

about multiple architectural domains. However, it is something we may
‘think into existence’ without actually constructing the model. In practice,

Describing Enterprise Architectures 57

an architecture (and especially an enterprise architecture) will arise in a

bottom-up fashion. Partial models from different domains will be con-

structed according to the needs in those domains. Where these touch upon
each other, inconsistencies may appear, which need to be resolved eventu-

ally since the real-world system being designed must of course be consis-

tent. In this way, we slowly move towards this Platonic underlying model,
and the partial models from which it is constructed can be seen as views of

the total architecture.

Having such a single underlying model makes it possible to create pow-

erful techniques for visualisation and analysis of enterprise architectures,
even if this model is incomplete and not fully consistent. Currently, if a

stakeholder requires information on some aspect of an architecture that

crosscuts several domains, a specialised view of the architecture will
probably be patched together manually by integrating information from

many different sources in these domains.2 If we suppose that there is this

single underlying model of an architecture, a view of this architecture can
be expressed as a projection or subset of this model. Appropriate software

tools can then automatically generate these views.

Consider the example in Sect. 3.1 on the integration of structural and
behavioural views. To relate the two, we have to consider models and tran-

sitions of models. But in relating static and dynamic aspects, a new distinc-

tion appears. Are we talking about changes within a model, or changes of
the modelling concepts, i.e., the conception of the universe? That is, is the

change exogenous or endogenous? This distinction reveals itself only

when we relate the structural and behavioural descriptions, not when we
consider them in isolation.

As another example, consider the change from batch processing systems

to service-oriented architectures. Someone working with batch processing
systems twenty years ago could not explain to us today why they do not

use service-oriented architecture, because the concept of service-oriented

architecture did not yet exist. Since the concept had not been invented yet,
it is not just a structural change within the model, but a change at the meta-

level of the concepts underlying the model.

The importance of the set of concepts which are used to describe an ar-
chitecture is acknowledged in the frequent use of ‘ontology’ within model-

ling. In our case, we refer to the set of concepts as the signature of the ar-

chitecture. Moreover, the change of signatures and models leads to our
notion of actions in views. This is explained in more detail in Sect. 3.3.

2 One of the ArchiMate project partners has in the past invested more than one

man-year in creating one specific view of an existing architecture…

58 Foundations

3.3 Pictures, Models, and Semantics

In many engineering disciplines, modelling a system consists of construct-
ing a mathematical model that describes and explains it. In the fields of en-

terprise and software architecture, however, there is an overwhelming ten-

dency to see pictures and diagrams as a form of model rather than as a
form of language, or, to be more precise, as a form of structure that helps

in visualising and communicating system descriptions. In other words, in

architecture there is a tendency to replace mathematical modelling by ad
hoc visualisations.

In this book we follow the standard practice in engineering disciplines.

Consequently, when we compare architectures like the ones in Fig. 3.1, we
ignore irrelevant issues that have to do with arbitrary visualisation. We

therefore distinguish between the content and the visualisation of a model

or view, where the first refers to the concepts involved, and the second re-
fers to the form in which these are presented.

For example, in one visualisation of an architecture a process may be

visualised as a circle, and in another one by a square. Moreover, the con-
tent may express that one concept is more important than another one,

which is visualised by drawing the first concept above the second one. The

same relation of importance can also be visualised by the intensity of the
colour which is used to visualise the concepts. The architect is motivated

to make explicit whether visual information like ‘above’ or ‘red’ has a

meaning in the model, or is incidental. When something is incidental the
architect is motivated to remove it from the picture, as it only distracts

from the message of the picture. When it is meaningful, its meaning has to

be made explicit. When a new viewpoint is defined, the content and its
visualisation can be defined in two separate phases.

The ‘content’ and ‘visualisation’ should be interpreted here in a loose

way. For example, the visualisation may also include input devices such as
menus or buttons, and the content may also include actions that change the

model by for example adding or deleting concepts. Actions in models are

used here to deal with interaction with the user.
Our motivation to stress the importance of modelling is that there is

something about architecture independent of visualisation. Two distinct

views, which are based on viewpoints from stakeholders with distinct con-
cerns, still have something in common. This is called the semantics of the

architecture. Semantics does not have to be explicitly given, it can also be

an unspoken common understanding among the users of the architecture. It
does not have to be one unified semantics, as there can also be several se-

mantics for different purposes and uses of the architecture. But in the latter

Pictures, Models, and Semantics 59

case, these semantics again have something in common. Perhaps they just

have to be consistent.
The importance of semantics has been emphasised in several other areas

too, with a related motivation. In some parts of computer science, the term

‘semantics’ of something in a model is often used to refer to the ‘effect’ of
that something in the model, referring to the dynamics within that model.

In linguistics there is a much older distinction between syntax, semantics,

and pragmatics. Another example is in the meaning of information on the
Web: Web pages have traditionally been used to describe all kinds of is-

sues, but they often refer to the same objects using distinct terminology.

This led Tim Berners-Lee to the invention of the semantic Web, where on-
tologies play a crucial role.

3.3.1 Symbolic and Semantic Models

To make the notion of semantics explicit, we distinguish between a sym-

bolic model and a semantic model. A symbolic model expresses properties
of architectures of systems. It therefore contains symbols that refer to real-

ity, which explains the name of this type of model.

A symbolic model expresses properties of architectures of systems

by means of symbols that refer to reality.

The role of symbols is crucial, as we do not talk about systems without us-

ing symbols. The reason is that systems are parts of reality, and we can
only talk about reality by using some symbolic form of communication.

When stakeholders refer to architectures and systems, they can do so

only by interpreting the symbols in the symbolic models. We call such an
interpretation of a symbolic model a semantic model.

A semantic model is an interpretation of a symbolic model, ex-

pressing the meaning of the symbols in that model.

A semantic model does not have a symbolic relation to architecture, as it
does not contain symbolic references to reality.

However, there is a relation between semantic model and reality, be-

cause a semantic model is an abstraction of the architecture. To understand
this relation between semantic model and architectures, one should realise

that an important goal of modelling is to predict reality. When a symbolic

model makes a prediction, we have to interpret this prediction and test it in
reality. The relevant issue in the relation between a system and semantic

60 Foundations

models of it is how we can translate results such that we can make test

cases for the symbolic model.
There are various ways in which we can visualise the relation between

the four central concepts of enterprise, architecture, symbolic model, and

semantic model. We put the concept of architecture central, as is illustrated
in Fig. 3.3.

Symbolic

Models

Architecture

Enterprise

Semantic

Models
interpreted by

abstracted byexpressed by

has

Fig. 3.3. The enterprise, its architecture, symbolic and semantic models.

There are three important observations we have to make here. First, the
above four concepts and their relations are used in engineering both for in-

formal as well as formal models. The relevant distinction we emphasise
between symbolic and semantic models is the distinction between using

symbols to refer to reality, and abstractions of reality that only refer to re-

ality by interpreting the symbols of the symbolic model. Note that this is
not the same distinction as that between informal and formal models:

within the class of informal models, expressed for example in natural lan-

guage, both kinds exist, as well as within the class of formal models, ex-
pressed for example in first-order logic.

Second, an architecture may be expressed by multiple symbolic models,

and one symbolic model may in turn be interpreted by several semantic
models. For example, we might define separate semantic models for per-

formance and for cost of a system that is expressed by one symbolic

model, e.g., in UML.
Third, in architecture often a distinction is made between the architec-

tural semantics and the formal semantics of a modelling language. As ex-

plained in Sect. 3.2.1, the enterprise under consideration is thought of in

Pictures, Models, and Semantics 61

terms of architecture concepts, which exist in the minds of, for instance,

the enterprise architect. These concepts can be represented in models,
which are expressed in a modelling language. Architectural semantics is

defined as the relationship between architectural concepts and their possi-

ble representations in a modelling language (Turner 1987). To understand
this distinction, consider Venn diagrams. They are useful structures for the

visualisation of the language of Boolean logic, but they are not a model

themselves. Their semantic model is given by the set-theoretical explana-
tion of their meaning. The formal semantics of a model or language, on the

other hand, is a mathematical representation of specific formal properties

of that model or language. The formal semantics of a computer program,
for example, expresses the possible computations of that program. Differ-

ent branches of formal semantics exist, such as denotational, operational,

axiomatic, and action semantics. Harel and Rumpe (2004) give a clear ex-
planation of the need for rigorously defining the semantics of modelling

languages.

There are two kinds of abstraction we use in creating a model of reality.
The first is abstracting from (properties of) the precise entity in reality to

which a concept refers. This occurs for example when we make a model of

the static structure of an application in terms of its components, leaving out
(i.e., abstracting from) their behaviour. The second kind is abstraction

from differences between entities in reality by grouping them into a single

concept. This is sometimes referred to as generalisation, and occurs for ex-
ample when we use the concept ‘employee’, which groups the individuals

in a company. This is related to the notion of ‘sorts’ discussed below.

3.3.2 Symbolic Models

A symbolic model is the formalisation of one or more aspects of the archi-
tecture of a concrete system. It comprises those parts of an architecture that

can be modelled mathematically, as opposed to the more pragmatic aspects

of an architecture that are concerned with characteristic notions like ration-
ale, goals, and plans.

A symbolic model is expressed using a description language, a represen-

tation of the model that is often confused with its interpretation. For exam-
ple, the expression 3 + 5 may be intended to mean a particular natural

number, but here is just notation for the syntactic model of the natural

numbers. Strictly speaking, a description language describes both the syn-

tactic structure of the model and its notation, i.e., the words or symbols
used for the concepts in the language. As we explained in Sect. 3.3.1, we

62 Foundations

make a strict separation between structure and the notation, and we will

use the term ‘model’ to refer to the structure.

The core of every symbolic model is its signature. It categorises the en-
tities of the symbolic model according to some names that are related, lin-

guistically or by convention, to the things they represent. These names are

called sorts. Relations between entities of some sorts and operations on
them are also declared as relation symbols in the signature. After the rela-

tions have been specified, they can be used in languages for constraining

further or analysing the nature of the symbolic model. An example is in

order here, before we go any further. Fig. 3.4 exhibits a structural descrip-
tion of the employees of a company.

DirectorDirector EmployeeEmployee

Responsible_for

Fig. 3.4. Symbolic model of the director–employee relationship.

We need to recall that the above is a syntactic structure; that is, a de-

scription of a symbolic model with a signature whose sorts are Employee

and Director, and with respective entities related by a relation named Re-
sponsible_for. As yet we have assigned no meaning to it; we have only

categorised the entities of the symbolic model into two categories and

named a relation between the entities belonging to two sorts. The syntactic
names used for the sorts and relations push our intuition some steps ahead:

we know what an employee is, what a director is, and what responsible for

means. However, while these syntactic names help us in our understand-

ing, they are also the main source of confusion in the communication and
analysis of an architecture. We could have named the above sorts X and Y

better to retain the meaningless quality of the syntax, and avoid confusion

with semantics.
A signature thus provides a conceptual glossary in whose terms every-

thing else in the symbolic model must be described, similar to an English

dictionary for the English language. Additionally, a signature comprises
information to capture certain aspects of the ontology of an architecture.

For example, it may include hierarchical information between sorts in

terms of an ‘is-a’ relationship, or containment information in terms of an

‘includes’ relationship, or dependency information in terms of a ‘requires’
relationship. Signatures that contain this additional information are more

general than a glossary. They provide a conceptual schema, similar to the

schema provided to biologists by the species classification.

Pictures, Models, and Semantics 63

DirectorDirector EmployeeEmployee

Responsible_for

Fig. 3.5. Extended symbolic model.

For example, Fig. 3.5 extends the previous signature with an ‘is-a’ rela-

tionship between the sorts Director and Employee (denoted by a UML in-

heritance relation), intuitively suggesting that every director is also an em-

ployee.
Moreover, the symbolic model may also contain a set of actions, and the

signature a set of action symbols, the meaning of which we discuss below.

3.3.3 Semantic Models

The formalised meaning of a symbolic model is given by a semantic
model, an interpretation of the symbolic model. A semantic model usually

assumes the existence of some mathematical objects (sets, for example),
used to represent the basic elements of a symbolic model. Operations and

relations of a symbolic model are mapped to usually better understood op-

erations and relations amongst the mathematical objects.
As an example, the formal semantics of a signature is provided by a col-

lection of sets (one for each sort of the signature), and a set of relations and

functions among them, one for each relation symbol and function symbol
in the signature. Hierarchical information between sorts is captured by the

ordinary subset inclusion, whereas containment information is denoted by

the usual element-of relation.
It is clear that,in general, there can be a large number of different inter-

pretations for the same symbolic model. This reflects the intuition that

there can be many architectures that fit a specific architecture description.
In fact, the signature of a symbolic model of an architecture specifies only

some basic building blocks by means of which the architecture is de-

scribed.
In other words, we see the formal semantics of a symbolic model as a

concrete collection of mathematical objects interpreting a system accord-

ing to a specific architecture description. As such, it involves concrete
components and their concrete relationships which may change in time be-

cause of the dynamic behaviour of a system. Concrete situations of a sys-

tem are described by means of variables typed according to the sort of the
individuals they are referring to. More concretely, for a symbolic model,

we will denote by x:T a variable x which ranges over individuals of sort T.

For example, we could use the logical sentence

64 Foundations

∃ x : Director. ∀y : Employee. Responsible_for(x, y)

to constraint the interpretation of the sort Director to be a non-empty set.
Note that since Director is_a Employee, also the interpretation of the latter

sort will be non-empty.

The actions occurring in a symbolic model are interpreted as changes of
the model based on interaction with the user. To define actions, we have to

define the input variables of the action, and how we can retrieve these in-

put variables from the user. In Chap. 7 we discuss the use of actions in
models in viewpoints and visualisation, and in Chap. 10 we describe some

technical aspects of implementing these actions in models.

Finally, in our approach described more explicitly in Chap. 8, the formal
semantics is rich enough to capture the dynamics of a system by interpret-

ing the symbolic (and often pictorial) information available for describing

business and software processes in the ArchiMate language discussed in
Chap. 5.

In the remainder of the book, whenever we use the unqualified terms

‘model’ or ‘semantics’ of an architecture, we refer to its symbolic model
and formal semantics, which is the common interpretation of these terms

in the architecture discipline.

3.3.4 UML vs. ArchiMate

The ArchiMate approach can be contrasted with the original approach in

UML, which we described in Chap. 2. In this approach, semantics was ex-

plicitly left out of the program. People who used the models could develop
semantics for them, but a general semantics was not supplied. This ap-

proach also stemmed from the origins of UML as a combination of three

existing notations that did not have formal semantics. Hence, the focus of

UML was and is on notation, i.e., syntax, and not on semantics. Although
some of the diagrams of the more recent versions of UML have a formal

semantics (see, e.g., the token-based Petrinet-like semantics of activity

diagrams in UML 2.0), there is no overall semantics for the entire lan-
guage.

We have taken the opposite approach. We do not put the notation of the

ArchiMate language central, but rather focus on the meaning of the lan-

guage concepts and their relations. Of course, any modelling language
needs a notation and we do supply a standard way of depicting the Archi-

Mate concepts, but this is subordinate to the architectural semantics of the

language.

Summary 65

3.4 Summary

An integrated architectural approach is indispensable to control today’s

complex organisations and information systems. It is widely recognised
that a company needs to ‘do architecture’; the legacy spaghetti of the past

has shown us that business and ICT development without an architectural

vision leads to uncontrollable systems that can only be adapted with great
difficulty. However, architectures are seldom defined on a single level.

Within an enterprise, many different but related issues need to be ad-

dressed. Business processes should contribute to an organisation’s prod-
ucts and services, applications should support these processes, systems and

networks should be designed to handle the applications, and all of these

should be in line with the overall goals of the organisation. Many of these

domains have their own architecture practice, and hence different aspects
of the enterprise will be described in different architectures. These archi-

tectures cannot be viewed in isolation.

For example, architectural domains are related, and structural and be-
havioural viewpoints are related. The integration has to deal with the fact

that the various viewpoints are defined by stakeholders with their own

concerns.

The core of our approach to enterprise architecture is therefore that mul-
tiple domains should be viewed in a coherent, integrated way. We provide

support for architects and other stakeholders in the design and use of such

integrated architectures. To this end, we have to provide adequate concepts
for specifying architectures on the one hand, and on the other hand support

the architect with visualisation and analysis techniques that create insight

into their structure and relations. In this approach, relations with existing
standards and tools are to be emphasised; we aim to integrate what is al-

ready available and useful. The approach that we follow is very generic

and systematically covers both the necessary architectural concepts and the

supporting techniques for visualisation, analysis, and use of architectures.
We adopt a framework around a stakeholder, enterprise, architecture,

and architecture description as a viewer with universe, conception, and

representation. The view and viewpoint of the stakeholder are the result of
modelling, an act of purposely abstracting a model from reality, i.e., from a

domain that is conceived to be a part of the universe. These views consist

of a set of enterprise architecture models.
Within this framework, a distinction is made between the content of a

view and its visualisation, and a distinction is also made between a sym-

bolic model, which refers to the enterprise architecture, and a semantic

model as an abstraction from the architecture and which interprets the

66 Foundations

symbolic model. The core of every symbolic model is its signature, which

categorises the entities of the symbolic model.

4 Communication of Enterprise Architectures

This chapter presents a communication perspective of enterprise architec-
tures. We provide both a theoretical and a practical perspective of the is-

sues involved in the communication of enterprise architectures. The gen-

eral idea is that the chapter helps the reader see how architecture
development and modelling can be optimally supported by discussing why

certain forms of modelling are used in some situation and how this fits the

goals in the process. The theoretical perspective will focus on communica-

tion during system development in general, where the word system should
be interpreted as any open and active system, consisting of both human

and computerised actors, that is purposely designed. The practical perspec-

tive will take shape as a set of practical guidelines that should aid archi-
tects in the selection and definition of architecture description approaches

that are apt for a specific (communication) context.

4.1 Introduction

Describing architectures is all about communication. If some architecture

description is not used as a means of communication in some shape or

form, then this description should not have been created in the first place.

Whatever the role of an architecture description is, it always involves
some communicative aspect. Consider, as an illustration, the potential uses

of architecture descriptions as identified in the IEEE 1471 standard (IEEE

Computer Society 2000):

− Expression of the system and its (potential) evolution.

− Analysis of alternative architectures.

− Business planning for transition from a legacy architecture to a new ar-

chitecture.

− Communications among organisations involved in the development,

production, fielding, operation, and maintenance of a system.

− Communications between acquirers and developers as a part of contract

negotiations.

68 Communication of Enterprise Architectures

− Criteria for certifying conformance of implementations to the architec-

ture.

− Development and maintenance documentation, including material for

reuse repositories and training material.

− Input to subsequent system design and development activities.

− Input to system generation and analysis tools.

− Operational and infrastructure support; configuration management and

repair; redesign and maintenance of systems, subsystems, and compo-
nents.

− Planning and budget support.

− Preparation of acquisition documents (e.g., requests for proposal and

statements of work).

− Review, analysis, and evaluation of the system across the life cycle.

− Specification for a group of systems sharing a common set of features,

(e.g., product lines).

Each of these uses of architecture involves forms of communication. In

this vein, in this chapter we present a ‘communication-aware’ perspective

of enterprise architectures. In doing so, we provide both a theoretical and a
practical perspective of the issues involved in the communication of enter-

prise architectures. The theoretical perspective will focus on communica-

tion during system development in general, where the word system should

be interpreted as any open and active system, consisting of both human
and computerised actors, that is purposely designed. The practical perspec-

tive will take shape as a set of practical guidelines that should aid archi-

tects in the selection (and definition) of architecture description languages
and approaches that are apt for a specific (communication) situation.

Architecture descriptions are used to communicate the architecture of a

planned or pre-existing system. This could be a system that is part of an
enterprise, an organisation, a business, an information system, a software

system, or the hardware infrastructure. The communication about the sys-

tem and its architecture is likely to take place between different stake-

holders of that system.
In this book, the primary focus is on architectural models of a graphical

(as opposed to textual or verbal) nature. One may refer to these as architec-

tural models ‘in the narrow sense’. In this chapter, however, we are con-
cerned with architecture descriptions in ‘the broader sense’. In other

words, textual, verbal, or any other types of architecture descriptions are

included.

At present, many description languages are already available to archi-
tects, while many more are being created by both academia and industry.

Why all these languages? How does one select the language that is most

System Development as a Knowledge Transformation Process 69

apt in a given situation? Such questions beg for a well-conceived answer.

In line with the old adage ‘practice what you preach’, we argue that just as

proper requirements engineering is needed for the development of systems,
proper requirements should also be formulated for languages and ap-

proaches that are to used as vehicles for communication during system de-

velopment. In formulating these requirements, several factors should be
taken into account, such as the development goals, the communication

goals, the concerns, personal goals, abilities, and attitudes of the actors in-

volved, etc.

We set out to provide a theoretical underpinning of the issues involved,
as well as practical guidelines that will aid architects in selecting the best

approach for their architectural communicative needs. We will therefore

start out with a theoretical exploration of the issues involved in communi-
cation during system development (Sects. 4.2 and 4.3), followed by the

application of this exploration to the field of enterprise architecture (Sect.

4.4).

4.2 System Development as a Knowledge Transformation

Process

In essence, we regard system development as a knowledge transformation

process whereby conversations are used to share and create knowledge

pertaining to both the system being developed, as well as the development

process itself. The notion of ‘conversation’ should be interpreted here in
the broadest sense, ranging from a single person producing an (architec-

tural) description, via a one-on-one design or elicitation session, to a work-

shop with several stakeholders, and even the widespread dissemination of
definitive architectures. This way of thinking provides a frame of thought

with which one can better understand the (communicative) requirements

posed on architecture description languages.

4.2.1 System Development Community

Given our focus on communication, it is important to identify the actors

that can play a role in the communication that takes place during the sys-

tem development process. These actors are likely to have some stake with
regards to the system being developed. Examples of such actors are prob-

lem owners, prospective actors in the future system (such as the future ‘us-

ers’ of the system), domain experts, sponsors, architects, engineers, busi-

ness analysts, etc.

70 Communication of Enterprise Architectures

These actors, however, are not the only ‘objects’ playing an important

role in system development. Another important class of objects are the

many different documents, models, forms, etc., that represent bits and
pieces of knowledge pertaining to the system that is being developed. This

entire group of objects, and the different roles they can play, is what we

shall refer to as a system development community.

System development community: a group of objects, such as ac-

tors and representations, which are involved in the development of a

system.

(We will clarify below why we regard documents as being part of the com-
munity.)

The actors in a system development community will (typically as a con-

sequence of their stakes) have some specific interests with regards to the
system being developed. This interest implies a sub-interest with regards to

(the contents of) the system descriptions that are communicated within the

community. This interest, in line with IEEE 1471 (IEEE Computer Society

2000), is referred to as the concern of stakeholders

Concern: an interest of a stakeholder with regards to the architec-

ture description of some system, resulting from the stakeholder’s
goals, and the present or future role(s) played by the system in rela-

tion to these goals.

Some example of concerns are:

− The current situation with regards to the computerised support of a busi-

ness process.

− The requirements of a specific stakeholder with regards to the desired

situation.

− The improvements, which a new system may bring, to a pre-existing

situation in relation to the costs of acquiring the system.

− The potential impact of a new system on the activities of a prospective

user.

− The potential impact of a new system on the work of the system admin-

istrators that are to maintain the new system.

4.2.2 System Development Knowledge

The system development community harbours knowledge about the sys-

tem being developed. The communication occurring within a system de-

velopment community essentially is aimed at creating, furthering, and dis-

System Development as a Knowledge Transformation Process 71

seminating this knowledge. Depending on their concerns, stakeholders will

be interested in different knowledge topics pertaining to the system being

developed.
We will now briefly explore the kinds of knowledge that are relevant to

a system and its development; in other words, the knowledge topics that

can be distinguished. In the next subsections, we will discuss in more de-
tail in what ways this knowledge can be made (more) explicit.

During system development, members of the system development

community will create and exchange knowledge pertaining to different

topics. We can make a first distinction between the target domain pertain-
ing to the system being developed and the project domain, about the de-

velopment process itself. We have borrowed these terms from the Informa-

tion Services Procurement Library (ISPL) (Franckson and Verhoef 1999).
For both of these knowledge domains, further refinements can be made

with regards to the possible topics. We identify the following additional

characterisations:

− Perspective: Artefacts, such as systems, can be considered from differ-

ent perspectives. Some examples are:

• business, application, and infrastructure aspects of a (computerised)

information system;

• social, symbolical, and physical aspects of a system;

• process, information, actors, and technology featuring in a system.

In Chap. 7, the notion of ‘viewpoint’ will be discussed in depth. A

viewpoint takes a specific perspective of a system. The concept of
viewpoint is, however, not synonymous with perspective as the former

includes some additional items, such as the modelling language that is to

be used to describe the system from the given perspective. In contrast, a
perspective is purely ‘topical’.

− Scope: Given a domain, such as a system or a development project, we

can identify several scopes when approaching the domain: enterprise-

wide, department-specific, task-specific, etc.

− Design chain: When considering the design of some artefact, a distinc-

tion can be made between:

• Purpose: to what purpose the artefact is needed.

• Functionality: what functionality the artefact should provide to its en-

vironment.

• Design: how it should realise this functionality.

• Quality: how well it should do so.

• Costs: at what cost it may do so, and may be constructed.

72 Communication of Enterprise Architectures

This distinction applies to the target domain as well as the project do-

main. In the latter case, the project’s execution plan/strategy is the de-

signed artefact.
Based on the above distinction, knowledge topics can be character-

ised in terms of their focus on, for example, functionality or quality in

isolation, or their focus on bridging the gaps between purpose, function-
ality, and design in terms of design rationale.

− Historical perspective: Given an artefact with a design, one may con-

sider different versions of this artefact’s design over time.

In the case of a system, one may consider the current version, the ver-
sion that will be in existence after the development project has finished,

and the (sketchy) version of the ‘future’ system that serves as a naviga-

tional beacon in a sea of possibilities to guide future development. In the

case of a development process, one may consider the execution
plan/strategy that is being used at the moment, or the plan/strategy that

was used before.

− Abstraction level: When considering a domain, one may do so at sev-

eral levels of abstraction. Various forms of abstraction can be distin-
guished: for example, type-instance, generalisation/is-a, encapsulation,

and hiding of implementation details.

As mentioned before, depending on their concerns, stakeholders may be

interested in different knowledge topics. For example, a financial control-
ler will be interested in an investment perspective of the overall scope of a

future system, a designer will be interested in all aspects of the design

chain from different perspectives, etc.

4.2.3 Explicitness of Knowledge

The actors in a system development community have a need to communi-

cate system development knowledge among each other. In the field of

knowledge management, a key distinction is made between explicit and
tacit knowledge (Nonaka and Takeuchi 1991). Explicit knowledge refers to

knowledge that can be externalised in terms of some representation. With

representation of knowledge, we refer to the process of encoding knowl-
edge in terms of some language on some medium, e.g., creating an archi-

tecture model.

However, not all forms of knowledge lend themselves well to explicit

representation. For example, the ability to maintain one’s balance on a bi-
cycle is learned by (painful) trial and error rather than reading instructions.

This knowledge is actively and personally passed on from generation to

generation: parents assist their children in this process by encouraging

System Development as a Knowledge Transformation Process 73

them and by protecting them from serious injury during the trial-and-error

process. In Nonaka and Takeuchi (1991), this is referred to as socialising

as a means to transfer knowledge that cannot be made explicit. The type of
knowledge concerned, which cannot easily be represented on a medium, is

referred to as tacit knowledge.

Our focus is on the communication of system development knowledge
by way of explicit representations, in other words explicit knowledge. In

the context of this book, these representations mainly take the form of ar-

chitecture descriptions. As discussed in Sect. 4.1, our initial theoretical

considerations cover development of systems in general. In accordance
with this generalisation we will, for now, use the terms systems description

and system description language rather than the terms architecture de-

scription and architecture description language.
System descriptions are essentially forms of explicit knowledge per-

taining to an existing/future system: its design, the development process by

which it was/is to be created, the underlying considerations, etc. Given this
focus, we can make a more precise classification with regards to what we

mean by ‘explicitness’. Based on Franckson and Verhoef (1999) and

Proper (2001), we identify the following dimensions of explicitness for

representations of system development knowledge:

− Formality: The degree of formality indicates the type of language used

to represent the knowledge. Such a language could be formal, in other

words a language with an underlying well-defined semantics in some

mathematical domain, or it could be informal – not mathematically un-
derpinned, typically natural language, graphical illustrations, anima-

tions, etc.

− Quantifiability: Different aspects of the designed artefact, be it (part of)

the target or the project domain, may be quantified. Quantification may
be expressed in terms of volume, capacity, workload, effort, resource,

usage, time, duration, frequency, etc.

− Executability: The represented knowledge may, where it concerns arte-

facts with operational behaviour, be explicit enough so as to allow for

execution. This execution may take the form of a simulation, a proto-
type, generated animations, or even fully operational behaviour based

on executable specifications.

− Comprehensibility: The knowledge representation may not be compre-

hensible to the indented audience. Tuning the required level of compre-
hensibility of the representation, in particular the representation lan-

guage used, is crucial for effective communication. The representation

language may offer special constructs to increase comprehension, such

74 Communication of Enterprise Architectures

as stepwise refinements, grouping/clustering of topically related

items/statements, etc.

− Completeness: The knowledge representation may be complete, incom-

plete, or overcomplete with regards to the knowledge topic (see previ-
ous subsection) it intends to cover.

4.2.4 Transformations of Knowledge

During the development of a system, the knowledge about the system and

its development will evolve. New insights emerge, designs are created,
views are shared, opinions are formed, design decisions made, etc. These

all lead to transformations of the ‘knowledge state’ of the development

community as a whole. The transformations of this ‘knowledge state’ are
brought about by conversations. This immediately raises the question:

what are these ‘knowledge states’?

The discussion above already provides us with some insight into the an-
swer to this question. The representations and the actors in a development

community can both be seen as harbouring certain knowledge topics. As

such, both representations and actors are (potential) knowledge carriers.

Knowledge topics refer to some sub-domain of the system being devel-
oped and/or its development process. The knowledge topics can therefore

be classified further in terms of their focus, scope, etc., as discussed in

Sect. 4.2.2.
The actual knowledge that is harboured by a knowledge carrier is not

explicitly taken into account. The knowledge that is available from/on/in a

knowledge carrier is a subjective notion. An aspect of this knowledge that
we can reason about more objectively is its level of explicitness, as we

have seen in Sect. 4.2.3.

The knowledge as it is present in a development community can be seen

to evolve through a number of states. Knowledge first needs to be intro-
duced into the community, either by creating the knowledge internally or

importing it from outside the community. Once the knowledge has been

introduced into a community, it can be shared among members of that
community. Sharing knowledge between different actors may progress

through a number of stages. We distinguish three major stages:

− Aware: An actor may become aware of (possible) knowledge by way of

the sharing by another actor.

− Agreed: Once knowledge is shared, an actor can make up his or her

own mind about it, and decide whether or not to agree to the knowledge
shared.

Conversation Strategies 75

− Committed: Actors who agree to a specific knowledge topic may de-

cide actually to commit to this knowledge. In other words, they may de-

cide to adapt their future behaviour in accordance with this knowledge.

There is no way to determine objectively and absolutely the level of
awareness, agreement, or commitment of a given set of actors. It is in the

eyes of the beholder. Since these ‘beholders’ are actors in the system de-

velopment community, we can safely assume that some of them will be
able to (and have a reason to) judge the level of sharing of knowledge be-

tween sets of actors, and communicate about this.

4.3 Conversation Strategies

The knowledge transformations as discussed in the previous section are

brought about by conversations. These conversations may range from

‘atomic’ actions involving a small number of actors, via discussions and

workgroups, to the development process as a whole. This has been illus-
trated informally in Fig. 4.1.

Fig. 4.1. Example sequence of conversations.

Each conversation is presumed to have some knowledge goal: a knowl-

edge state which the conversation aims to achieve (or to maintain). In

achieving this goal, a conversation will follow a conversation strategy.
Such a strategy is needed to achieve the goal of the conversation, starting

out from the current state.

Conversations take place in some situation that may limit the execution
of the conversation. We may characterise such a situation further in terms

of situational factors:

− Availability of resources: Refers to the availability of resources that

can be used in a conversation. The availability of resources can be re-

76 Communication of Enterprise Architectures

fined to more specific factors such as time for execution, actors, intel-

lectual capacities needed from the actors, or financial means.

− Complexity: The resources needed for the conversation, the knowledge

being conversed about, etc., will exhibit a certain level of complexity.
This complexity also influences the conversation strategy to be fol-

lowed. Examples of such complexity factors, inspired by Franckson and

Verhoef (1999), are the heterogeneity of the actors involved, the quan-
tity of actors, complexity of the technology used, the complexity of the

knowledge being conversed about, and the size of the gap between the

initial knowledge state and the desired knowledge state.

− Uncertainty: If you want to determine a conversation strategy fit for a

given situation, you have to make assumptions about the knowledge

goal, the initial state, the availability of resources, as well as the com-

plexities of these factors. During the execution of a conversation, some

of these assumptions may prove to be wrong. For example, the com-
mitment of certain actors involved may be lower than anticipated (initial

state); materials needed for a workshop may not be available on time

(resources); during a requirements elicitation session it may come to the
fore that the actors involved do not (yet) have enough knowledge about

the future system and its impact to formulate/reflect on the requirements

of the future system (initial state).

Note that it may actually be part of a conversation strategy to first ini-
tiate conversations that aim to reduce these uncertainties, in order to re-

duce potential adverse consequences.

If you formulate a conversation strategy, you should take all of the above-
mentioned factors into account. A conversation strategy should typically

cover at least the following elements:

− Execution plan: As we said before, a conversation can be composed of

sub-conversations. Each of these sub-conversations focuses on a sub-
goal, but they all contribute towards the goal of the conversation as a

whole. The execution plan of a (composed!) conversation consists of a

set of sub-conversations, together with a planned execution order.

− Description languages: The description languages to be used in the

conversation(s).

− Media: The kind of media to be used during the conversation(s).

− Cognitive mode: The cognitive mode refers to the way in which knowl-

edge is gathered or processed by the actors involved in a conversation.

We distinguish two options:

• Analytical approach: When information is processed analytically, the

available information is simplified through abstraction in order to

Conversation Strategies 77

reach a deeper and more invariant understanding. An analytical ap-

proach is typically used to handle complexity.

• Experimental approach: When using an experimental approach the

project actors learn from doing experiments. The purpose is to reduce
uncertainties by generating more information. Experiments can, for

example, be based on prototypes, mock-ups, benchmark tests of mi-

grated components, or other kinds of techniques which make the re-
sults of migration scenarios visible.

You may need to combine the two cognitive modes in specific situa-

tions, in particular in the case of conversations that are composed of
several smaller sub-conversations.

− Social mode: The social mode is the way in which the actors executing

the system development process collaborate with the actors from the

business domain. We distinguish two options:

• Expert-driven: In an expert-driven approach, project actors (the ex-

perts) will produce descriptions on the basis of their own expertise,
and interviews and observations of business actors. The descriptions

can then be delivered to the business actors for remarks or approval.

• Participatory: In a participatory approach, the project actors produce

the descriptions in close cooperation with some or all the business ac-
tors, e.g., in workshops with presentations, discussions and design

decisions. A participatory approach may allow the acquisition of

knowledge, the refinement of requirements and the facilitation of or-

ganisational change.

− Communication mode: We can distinguish a small number of basic

patterns of communication here, as covered by combinations of the fol-

lowing five factors:

• Speaker–hearer ratio: Most typically many to one, one to many, one

to one, many to many.

• Response: Simply whether or not an answer is expected from the

hearer; if a response is indeed expected, one response may lead to a

further response, leading to dialogue and turn taking.

• Time lag: Whether or not communication takes some time between

‘speaking’ and ‘hearing’. Consider the difference between a tele-
phone call and an e-mail message.

• Locality: Whether or not there is a perceived distance between par-

ticipants. Note that this is a relative notion; two people communi-

cating via videophone between Tokyo and Amsterdam may feel

‘close’, while two people from different departments housed in the
same building may feel ‘distant’. Distance can be not only physical,

but also cultural.

78 Communication of Enterprise Architectures

• Persistency: Whether or not a message can be kept after communica-

tion, i.e., can be ‘reread’. This is of course closely linked to the me-

dium used, but it may also be related to the status of a document: per-

sistency of a ‘temporary document’ or intermediary version may
actually be counterproductive.

We can use combinations of these factors to typify many different

modes of communication, which can have a major impact on the re-
sources required for communication and the likelihood that a knowledge

goal is reached. For example, one-to-many communication is relatively

efficient and effective, assuming that no immediate (n:1) response is
given; however, if a time lag is added, n:1 responses become possible

but the one participant will have to invest much time to digest all these

responses. Also, if n:1 responses are given rapidly, but the communica-

tion is persistent (e.g., people respond through altered copies of a file),
then these responses are no problem except for the load on the recipient.

And if many relatively distant people participate, in-depth and context-

dependent communication will be difficult.
In a modelling context, not all combinations (communication modes)

will be relevant, but it is still vital to consider things like ‘Do I expect

anyone to respond to this model?’; ‘How many people will have to re-

spond?’; ‘How distant are they?’; ‘How quick will the response (have
to) be?’; ‘How long will it take me to process responses?’, etc.

A summary of this discussion is provided by Fig. 4.2. Given a knowledge

goal, an initial state, and conversation situation, a conversation strategy
can be determined, which should lead us from the initial state to the

knowledge state as desired by the knowledge goal, taking into account the

conversation situation at hand.

Knowledge goal

Initial state

Conversation situation

Conversation strategy⇒ ? ⇒

Fig. 4.2. From knowledge goal to conversation strategy.

4.4 Architectural Conversations

After the theoretical discussions of the previous sections, we now return to

the practice of communicating enterprise architectures. The situation as
depicted in Sect. 4.2 may indeed portray the underlying mechanics in the-

Architectural Conversations 79

ory, but it still leaves practitioners with the question of how actually to

produce such a conversation strategy. In all fairness, current research into

these matters is still in its initial stages. The theoretical model as discussed
above will have to be scientifically validated and refined. In addition, prac-

tical heuristics should be formulated, matching elements from conversation

strategies to conversation situations and thus addressing the gap between
the knowledge goal and the initial state.

Even so, we can already provide practitioners with some guidance in se-

lecting conversation strategies to communicate about enterprise archi-

tectures, by reducing the discussion of selecting a conversation strategy to
the selection of a class of architectural conversation in conjunction with an

appropriate architectural viewpoint. To direct this selection, we will define

a number of classes of architectural knowledge goals. The selected view-
points identify what shall be conversed about, and what language (and

language conventions) shall be used to do so, while the selected conversa-

tion technique identifies the style of conversation that is to be used.
So this section provides a discussion of the classes of architectural

knowledge goals and conversation techniques that we distinguish within

the context of enterprise architecture, as well as their relationship. In Chap.

7, the notion of viewpoint will be discussed in more detail, and additional
heuristics on the selection of viewpoints and conversation types will be

given.

4.4.1 Knowledge Goals

In Sect. 4.2.4, we identified three major stages in communicating knowl-

edge: awareness, agreement, and commitment. Based on these and on the

levels of sharing of knowledge and explicitness of knowledge as identified

in Sect. 4.2.3, we can identify the following classes of knowledge goals
that you may want to achieve in a conversation:

− Introduction of knowledge: This refers to situations where there is a

need to introduce into or create new knowledge in a (part of a) develop-

ment community. These kinds of knowledge goals typically lead to
training or awareness sessions.

− Agreement to knowledge: With this class of knowledge goals, we refer

to situations in which the mutual agreement of different stakeholders

(with their own specific stakes and concerns!) needs to be improved or

validated.

− Commitment to knowledge: In these cases, the knowledge goal goes

beyond that of achieving agreement. Stakeholders should be willing to

act upon the knowledge they agree to.

80 Communication of Enterprise Architectures

Note that the introduction of knowledge, as described above, may pertain

to a subset of the development community. At the start of a system devel-

opment project, the development team may not (yet!) have knowledge per-
taining to the specific application domain. Domain experts and other in-

formants, by nature of their roles, do have this knowledge. The develop-

ment community as a whole comprises at least both the development team
and the domain experts. A domain analysis session involving, for example,

a business analyst and a domain expert introduces (part of) the domain

knowledge of the domain expert into the development team.

4.4.2 Conversation Techniques

In architecture development, we find a number of common conversation

techniques where it concerns the communication of architectural models:

− Brown-paper session: Structured brainstorm-like group session (up to

about 15 people) in which items (keywords or short phrases) are elicited
from the individuals in the group in answer to a question such as: ‘What

are the key functionality issues in our current IT architecture?’ Typi-

cally, every individual item is written on a small adhesive note (‘Pos-

tIt’). The items are then collected on a sheet of paper (traditionally of
the cheap brown kind) and, by means of an open and creative group

process, structured and categorised. This may involve adding, deleting,

merging, or changing items. Usually, a mediator or facilitator is in-
volved.

− Elicitation interview: An interview where an analyst puts informative

questions to the informants. The aim is to gather knowledge from the in-

formants. Interviews can be more or less ‘open’: they can be strictly fo-
cused or guided, but the conversation can also be left open to go where

the interest of the interviewer or informants leads it.

− Workshop: Involves one to, say, fifteen people, working on a model or

view interactively, mediated by an architect or analyst. This class also

encompasses so-called joint modelling sessions. A popular, effective,
and realistic technique is to project a view or model and have a facilita-

tor adapt it in full view of the participants, thus generating immediate

feedback. With a few participants, a workshop can of course simply take
place behind a screen and keyboard.

− Validation interview: An interview where an analyst will aim to find

out if the view or model matches the views and expectations of an in-

formant. This could be a view or model that has been communicated to
the informants beforehand, or during the interview. A validation inter-

view will typically be much more ‘closed’ than an elicitation interview:

Architectural Conversations 81

there will have to be some systematic approach by which validity of the

view or model is checked.

− Committing review: A group of stakeholders are presented with a num-

ber of alternative models or views and their impact. They are requested
to select one alternative and commit to this alternative based on their in-

sights into the potential impact. This typically involves a formal deci-

sion-making processes (Franckson and Verhoef 1999).

− Presentation: Involves one to three people presenting a model or view

to a group of, say, up to a hundred people. One may decide to elicit

feedback, but this is usually gathered afterwards, in a more personal

way, or at least 1:1 (e.g., through a feedback round).

− Mailing: A form of ‘mass’ communication, where a model or view is

presented or handed over to a large number of people. Feedback may or

may not be encouraged (feedback round).

Even though we have not yet discussed viewpoints, we can already relate

the identified knowledge goals to the conversation techniques. This is
shown in Table 4.1, which is based on interviews and discussions with

many architects from industry.

Table 4.1. Knowledge goals and conversation techniques.

 Knowledge Goal�

Conversation Technique� Introduce� Agree� Commit�

Brown-paper session � ++� +� -�

Elicitation interview � ++� +� -�

Workshop � +� ++� +�

Validation interview � -� ++� +�

Committing review � -� -� ++�

Presentation � ++� -� -�

Mailing � +� -� -�

A + indicates that a certain conversation class is well suited for the selected tech-

nique of knowledge goals, while ++ indicates that it is particularly well suited. On

the other hand, a - indicates that a certain conversation technique is ill-suited for

the selected class of knowledge goals, while -- indicates that it is particularly ill-

suited.

This table can fruitfully be used in practice to choose the conversation

technique for the task and knowledge goal at hand. In Chap. 7, we will

82 Communication of Enterprise Architectures

have a more in-depth look at the use of viewpoints to assist communica-

tion between the different stakeholders.

4.5 Summary

In the previous sections, we have presented both a theoretical and a practi-

cal perspective of the issues involved in the communication of enterprise

architectures. The theoretical perspective described the communication
during system development in general. Based on the one hand on this theo-

retical view and on the other hand on the experiences of architects, the

practical perspective presented a number of practical guidelines and con-
versation techniques that should aid architects in the selection and defini-

tion of architecture description approaches that are fit for a specific com-

munication situation.

5 A Language for Enterprise Modelling

Architecture provides a means to handle the complexity of modern infor-
mation-intensive enterprises. To this end, architects need ways to express

architectures as clearly as possible: both for their own understanding and

for communication with other stakeholders, such as system developers,
end users, and managers. Unfortunately, the current situation is that archi-

tects in different domains, even within the same organisation, often use

their own description techniques and conventions. To date, there is no

standard language for describing enterprise architectures in a precise way
across domain borders. They are often described either in informal pictures

that lack a well-defined meaning, or in detailed design languages (such as

UML) that are difficult to understand for non-experts. This frequently
leads to misunderstandings that hinder the collaboration of architects and

other stakeholders. Also, it makes it very difficult to provide tools for

visualisation and analysis of these architectures.

This chapter explains what the added value of a separate enterprise
modelling language is in addition to existing, more detailed design lan-

guages for business processes or software, for instance. It shows the role

that such a language can play in model integration. With this in mind, we
introduce the concepts of the ArchiMate enterprise modelling language

and use practical modelling examples to illustrate how they can be used.

Special attention is paid to the relations between concepts. In particular,
we show how the relations between different layers or aspects of an archi-

tecture can help to gain insight into the alignment between, for example,

the business processes and their supporting applications, or the applica-

tions and the technical infrastructure.

5.1 Describing Coherence

In information and ICT-intensive organisations, several types of architects

and architectural practice can be found, ranging from product and process
architectures to the more technically oriented application and infrastructure

architectures.

84 A Language for Enterprise Modelling

The ICT-related disciplines already have a somewhat longer architec-

tural tradition, although there the distinction between architecture and de-

sign is not always sharp. Application architects, for example, describe the
relations between the many software applications used within the enter-

prise, as well as the global internal structure of these applications. Pres-

ently, UML is usually the language of choice for this purpose, although
there are still organisations using their own proprietary notation. The archi-

tecture of the technical infrastructure, describing, among others, the layout

of the computer hardware and networks hardware in the company, is gen-

erally captured in informal drawings of ‘clouds’ and ‘boxes’, if at all.
In the more business-oriented disciplines, ‘working under architecture’

is a more recent development. Since the advent of process orientation in

the 1990s (e.g., Business Process Redesign (Davenport and Short 1990)),
more and more organisations have started to document their business pro-

cesses in a more or less formal way. However, these descriptions do not

focus on the architectural aspects, i.e., they do not provide an overview of
the global structure within processes and the relationships between them.

Some organisations have a description of their product portfolio, which is

generally text based: visual modelling has not yet gained acceptance in this

field.
Thus, we can say that within many of the different domains of expertise

that are present in an enterprise, some sort of architectural practice exists,

with varying degrees of maturity. However, due to the heterogeneity of the
methods and techniques used to document the architectures, it is very dif-

ficult to determine how the different domains are interrelated. Still, it is

clear that there are strong dependencies between the domains. For exam-
ple, the goal of the (primary) business processes of an organisation is to

realise their products; software applications support business processes,

while the technical infrastructure is needed to run the applications; infor-

mation is used in the business processes and processed by the applications.
For optimal communication between domain architects, needed to align

designs in the different domains, a clear picture of the domain inter-

dependencies is indispensable.
With these observations in mind, we conclude that a language for mod-

elling enterprise architectures should focus on interdomain relations. With

such a language, we should be able to model:

− Any global structure within each domain, showing the main elements
and their dependencies, in a way that is easy to understand for non-

experts of the domain.

− The relevant relations between the domains.

Service Orientation and Layering 85

Another important property of an enterprise modelling language – and of

any modelling language – is a formal foundation, which ensures that mod-

els can be interpreted in an unambiguous way and that they are amenable
to automated analysis. Also, it should be possible to visualise the same

model in different ways, tailored towards specific stakeholders with spe-

cific information requirements.
In this chapter, we present the enterprise modelling language that we use

throughout this book. Although, in principle, the concepts of this language

are sufficiently generic and expressive to model many of the aspects within

specific domains, it is clearly not our intention to introduce a language that
can replace all the domain-specific languages that exist. For specific (de-

tailed) designs of, for example, business processes or applications, the ex-

isting languages are likely to be more suitable. We do, however, conform
as much as possible to the modelling standards that exist in the different

domains.

In Fig. 5.1, the role that the enterprise architecture modelling language
plays in our approach is summarised. It provides a means for integration,

by allowing the creation of models that show high-level structures within

domains and the relations between domains. Also, it occupies a central

spot in the approach in that it provides the basis for the visualisation and
analysis techniques described elsewhere in this book.

High -level modelling

within a domain

Modelling relations

between domains

Basis for

visualisation

Basis for

analysis

Fig. 5.1. The role of the ArchiMate language.

5.2 Service Orientation and Layering

In the enterprise modelling language that we propose, the service concept
plays a central role. A service is defined as a unit of functionality that

86 A Language for Enterprise Modelling

some entity (e.g., a system, organisation, or department) makes available

to its environment, and which has some value for certain entities in the en-

vironment (typically the ‘service users’). Service orientation supports cur-
rent trends ranging from the service-based network economy to ICT inte-

gration with Web services. These examples already show that services of a

very different nature and granularity can be discerned: they can be pro-
vided by organisations to their customers, by applications to business

processes, or by technological facilities (e.g., communication networks) to

applications.

Service orientation may typically lead to a layered view of enterprise ar-
chitecture models, where the service concept is one of the main linking

pins between the different layers. Service layers with services made avail-

able to higher layers are interleaved with implementation layers that realise
the services. Within a layer, there may also be internal services, e.g., ser-

vices of supporting applications that are used by the end-user applications.

How this leads to a stack of service layers and implementation layers is
shown in Fig. 5.2. These are linked by used by relations, showing how the

implementation layers make use of the services of other (typically ‘lower’)

layers, and realisation relations, showing how services are realised in an

implementation layer.

Technical infrastructure

Infrastructural services

Application components

Application services

Business processes

Business services

CustomersCustomers

Supporting application

components

Internal application

services

Primary application

components

Supporting application

components

Internal application

services

Primary application

components

Fig. 5.2. Layered view.

Three Dimensions of Modelling 87

Although, at an abstract level, the concepts that are used within each layer

are similar, we define more concrete concepts that are specific for a certain

layer. In this context, we distinguish three main layers:

1. The business layer offers products and services to external customers,

which are realised in the organisation by business processes (per-

formed by business actors or roles).
2. The application layer supports the business layer with application ser-

vices which are realised by (software) application components.

3. The technology layer offers infrastructural services (e.g., processing,

storage, and communication services) needed to run applications, real-
ised by computer and communication devices and system software.

5.3 Three Dimensions of Modelling

A premise of the ArchiMate language is that the general structure of mod-
els within the different layers is similar. The same types of concepts and

relations are used, although their exact nature and granularity differ. As a

result of this uniformity, models created for the different layers can quite
easily be aligned with each other.

Within each layer, the language is structured according to the three di-

mensions shown in Fig. 5.3. The core concepts that are found in each layer

along these dimensions are depicted in Fig. 5.4. The use of these concepts
is illustrated in Fig. 5.5 by means of an example model, roughly using the

same three-dimensional structure, and already using the notation that we

will introduce in the next sections. Finally, Fig. 5.6 shows the same exam-
ple model with a more legible layout, structured in an external behaviour

(service) layer, internal behaviour layer, and structure layer.

collective

external

structure

individual

internal

behaviour

Fig. 5.3. Three dimensions of architectural concepts.

88 A Language for Enterprise Modelling

Structure

element

Service Interface

Behaviour

element

Behaviour

element

Interaction
Col labo-

ration

Fig. 5.4. The core concepts in the three dimensions.

Insurer

Intermediary

(Collaboration)

Accept

claim

Assess

claim

Settle

claim

Register

claim

Claim

intake

Claim

settlement

Phone

Bank

Fig. 5.5. Example model.

InsurerIntermediary

Accept

claim

Assess

claim

Settle

claim

Register

claim

Claim

intake

Claim

settlement

BankPhone (Collaboration)

Fig. 5.6. Example model (modified layout).

Three Dimensions of Modelling 89

First, we distinguish the structural or static aspect (right side of Fig.

5.4) and the behavioural or dynamic aspect (left side of Fig. 5.4). Behav-

ioural concepts are assigned to structural concepts, to show who or what
displays the behaviour. In the example, role, interface and collaboration

are assigned to business process, business service, and business interac-

tion, respectively. In addition to active structural elements (the business
actors, application components, and devices that display actual behaviour,

i.e., the ‘subjects’ of activity), we also recognise passive structural ele-

ments, i.e., the objects on which behaviour is performed. In the domain of

information-intensive organisations, which is the intended application area
of our language, these are usually information objects in the business layer

and data objects in the application layer.

Second, we make a distinction between an external view and an internal
view of systems. When looking at the behavioural aspect, these views re-

flect the principles of service orientation as introduced in the previous sec-

tion. The service concept represents a unit of essential functionality that a
system exposes to its environment. For the external users, only this exter-

nal functionality, together with non-functional aspects such as the quality

of service, costs, etc., are relevant. If required, these can be specified in a

contract or service-level agreement. Services are accessible through inter-
faces, which constitute the external view of the structural aspect. In the ex-

ample in Fig. 5.6, the ‘Claim intake’ service allows customers of an insur-

ance company to submit insurance claims by phoning the intermediary; the
telephone is the interface. The ‘Claim settlement’ service handles the fi-

nancial settlement of the claim, by paying the appropriate amount through

the Bank interface.
Third, for the internal realisation of services and interfaces, we distin-

guish between behaviour that is performed by an individual structural ele-

ment (e.g., actor, role component, etc.), and collective behaviour (interac-

tion) that is performed by a collaboration of multiple structural elements.
In the example, ‘Register claim’ is an interaction that is performed by a

collaboration of the ‘Intermediary’ and ‘Insurer’ roles. From an external

perspective, it is usually irrelevant whether a service is realised by individ-
ual or collective behaviour: this is purely an implementation issue. An in-

teraction can be treated as a specialisation of a behaviour element: as

shown in the example model, it can trigger or be triggered by other be-

haviour elements (including other interactions), and it can be part of a
process. Similarly, a collaboration can be treated as a specialisation of a

structure element. This introduces the possibility of recurrence: next to in-

dividual structure elements, a collaboration may also aggregate other, more
fine-grained collaborations.

90 A Language for Enterprise Modelling

Business

actor

Application

component

Business

role

Business

process

Application

function

Application

service

Business

service

Business

object

Data

object

Device
System

software

Infrastructure

service

Artifact Network

Event

Represen -

tation

Business

interaction

Business

collaboration

Application

interface

Infrastructure

interface

B
u
s
in
e
s
s

A
p
p
lic
a
tio

n
T
e
c
h
n
o
lo
g
y

Passive structure Behaviour Active structure

Fig. 5.7. Main concepts of the ArchiMate language.

In the following sections, we discuss the concepts within the three layers

identified in the previous section. Although these layer-specific concepts
follow the general structure shown in this section, they differ with respect

to, for example, their granularity. Also, some of the layers have a number

of additional concepts. The structure of the language and the most impor-

tant concepts at each layer are summarised in Fig. 5.7. A full overview of
the language meta-model can be found in Appendix A and the notation is

given in Appendix B.

In the next sections, we use simple example models to illustrate the use
of the concepts. More elaborate examples can be found in Sect. 5.8 and in

some of the other chapters of this book.

5.4 Business Layer Concepts

An example of a business layer model is shown in Fig. 5.8, illustrating the

use of the central concepts and relations. In the following subsections, we

will explain the business layer concepts in more detail.

Business Layer Concepts 91

 Handle Claim

PayValuateAccept

Notification

Client

Insurant

Insurer ArchiSurance

Customer
information

service

Claims
payment

service

business actor

business role

business service
used by

assignment

access

business object

business interaction triggering

Claim
fulfilment

business

collaboration

realisation

business process

Register

aggregation

Fig. 5.8. Example of a business layer model.

5.4.1 Business Structure Concepts

The structure aspect at the business layer refers to the organisation struc-

ture, in terms of the actors that make up the organisation and their relation-
ships. The central structural concept is the business actor.

Business actor: an active entity that performs behaviour (i.e., the

‘subject’ of behaviour).

A business actor may be an individual person (e.g., a customer or an em-
ployee), but also a group of people and resources that have a permanent (or

at least long-term) status within the organisation. Typical examples of the

latter are a department and a business unit. Two different specialisations

may be defined to distinguish the two cases. This is illustrated in Fig. 5.9.
The figure also illustrates the use of the intermediary business role con-

cept to make the link between actors and behaviour more flexible.

Business role: states which business behaviour is performed by a

business actor that fulfils this role.

 The idea is that the work that an actor performs within an organisation is

always based on a certain role that the actor fulfils. The set of roles in an

organisation can be expected to be much more stable than the specific ac-
tors fulfilling these roles. Multiple actors can fulfil the same role, and, con-

versely, a single actor can fulfil multiple roles.

92 A Language for Enterprise Modelling

Business collaboration: a (possibly temporary) collective of roles
within an organisation which perform collaborative behaviour (in-

teractions).

Unlike a department, which may also group roles, a business collaboration

does not have an official (permanent) status within the organisation: it is

specifically aimed at a specific interaction or set of interactions between

roles.
The same service may be offered on a number of different interfaces,

e.g., by mail, by telephone or through the Internet. This example suggests

that different ‘channels’ for offering products or services are typically
modelled as business interfaces.

Business interfaces: the (logical or physical) locations where the

services that a role offers to the environment can be accessed.

Business objects represent the important concepts in which the business
thinks about a domain.

Business objects: the passive entities such as business processes or

functions that are manipulated by behaviour.

Useful specialisations of the business object concept are Message, i.e., an
object intended to exchange information between parties, and Administra-

tion, i.e., a coherent collection of information used internally (see Fig. 5.9).

Business

role

Department

Business

actor

Person

*
Business

objectRepresentation

Message Administration

Fig. 5.9. Specialisations of the ‘Business actor’ and ‘Business object’ concepts.

Representation: the perceptible form of the information carried by

a business object, such as a document.

If relevant, representations can be classified in various ways: for example,
in terms of medium (e.g., electronic, paper, audio) or format (e.g., HTML,

PDF, plain text, bar chart). A single business object can have a number of

Business Layer Concepts 93

different representations, but a representation always belongs to one spe-

cific business object.

5.4.2 Business Behaviour Concepts

Business services are used to expose business functionality to the envi-

ronment.

Business service: a coherent piece of functionality that offers added
value to the environment, independent of the way this functionality

is realised internally.

A distinction can be made between ‘external’ business services, offered to

external customers, and ‘internal’ business services, offering supporting

functionality to processes or functions within the organisation. (The term
business service is sometimes also used to refer to application services

used by ‘the business’, which may be somewhat confusing.)

Internally to the organisation, organisational services are realised by
business behaviour, for which we have a number of concepts: business

process, business function, business activity, or business interaction. For

the ‘consumers’ of a business service the internal behaviour of an organi-
sation is usually irrelevant: they are only interested in the (functional and

non-functional) results of the behaviour that are advertised by the organ-

isational service. Internal business behaviour, in turn, may use other ser-

vices (internal to the organisation, but external to a smaller entity within
the organisation). Note that in some organisations, the term (business)

function is used to designate an external, implementation-independent unit

of behaviour, which is very similar to our service concept.
Business activity, business process, and business function are all units of

internal behaviour performed by one or more roles within the organisation

(see Fig. 5.10).

Business activity: the smallest level of decomposition of business

behaviour.

A business activity – in some languages this is also called a (process) task

– can be defined as a behaviour element that has the right granularity to
determine the assignment to specific roles, and to specify the services and

applications needed to support it. A business activity cannot be further de-

composed.

94 A Language for Enterprise Modelling

Business

behaviour

Business

process

Business

function

Business

activity

**

Fig. 5.10. Specialisations of the ‘Business behaviour’ concepts.

Although the distinction between the two is not always sharp, it is often
useful to distinguish a process view from a function view of behaviour.

Both concepts can be used to group activities, but based on different

grouping criteria.

Business process: a ‘flow’ of activities, with one or more clear

starting points and leading to a clearly defined result.

The is sometimes described as a ‘customer-to-customer’ process, where

‘customer’ may also be an ‘internal customer’, in the case of subprocesses

within an organisation.

Business function: offers functionality that may be useful for one or

more business processes.

A business function groups behaviour based on, for example, required

skills, capabilities, resources, or (application) support. Typically, the busi-
ness processes of an organisation are defined based on the products and

services that the organisation offers, while the business functions are the

basis for the assignment of resources to tasks and the application support.

Handle request

Handle claim

Customer

Relations

Claim

Handling
Financial

Handling

Receive

request

Receive

claim

Collect

premium

Pay

compensation

Judge
claim

Request

insurance

Submit

claim

Fig. 5.11. Business processes versus business functions.

Business Layer Concepts 95

The example of Fig. 5.11 illustrates the process view and function view in

one picture. As the figure suggests, there is a potential many-to-many rela-

tion between functions and processes.
A business interaction is a unit of behaviour similar to a business proc-

ess or function, but which is performed in a collaboration of two or more

roles within the organisation.

Business interaction: behaviour performed in a collaboration of

two or more business roles.

Although interactions are external behaviour from the perspective of the

roles participating in the collaboration, the behaviour is internal to the col-
laboration as a whole. Similar to processes or functions, the result of a

business interaction can be made available to the environment through an

organisational service.

Sell

product

Buy

product

Complete

transaction

Buyer Seller

Sell

product

Buy

product

Buyer Seller

Selling

Fig. 5.12. Interaction versus service use.

The example of Fig. 5.12 illustrates how an interaction and collabora-

tion can be used to model a business transaction and how the same situa-

tion can be modelled with the service and interface concepts. These two al-
ternatives can be seen as two views, a symmetrical (‘peer-to-peer’) view

and an asymmetrical (‘client–server’) view, of the same process. In the

former view, the buyer and seller perform collaborative behaviour to settle
a transaction, while in the latter view the selling of a product is considered

to be a service that the seller offers to the buyer.

Business event: something that happens (externally) and may influ-

ence business processes, functions, or interactions.

A business event is most commonly used to model something that triggers

behaviour, but other types of events are also conceivable, e.g., an event

that interrupts a process. Unlike business behaviour, a business event is in-
stantaneous: it does not have duration. Events may originate from the envi-

96 A Language for Enterprise Modelling

ronment of the organisation (e.g., from a customer), but also internal

events may occur, generated by other processes within the organisation.

The example of Fig. 5.13 shows how an event can be used to decouple
processes. The ‘Assess claim’ and ‘Pay compensation’ processes can be

modelled separately, with their own incoming and possibly outgoing

events. The ‘Payment request sent’ event, a result of the ‘Assess claim’
process, is a trigger for the ‘Pay compensation’ process to start (here called

‘Payment request received’). When composing these two models into one

new model, the linking event can be omitted; it is then replaced by the

triggering relationship between the two processes.

Assess

claim

Claim

received

Payment

request

sent

Pay

compensation

Payment

request

received

Claim

handling

department

Financial

department

Assess

claim

Claim

received

Pay

compensation

Fig. 5.13. Events to decouple processes.

5.4.3 Higher-Level Business Concepts

The higher-level business concepts provide a way to link the operational

side of an organisation to its business goals. These concepts are also con-

cerned with the products or services that an organisation offers to its cus-
tomers.

We define a (financial or informational) product as of a collection of

services, together with the rules for their use (see Fig. 5.14).

Product: a collection of services together with a contract that speci-

fies the characteristics, rights, and requirements for their use.

Informally speaking, the collection of services constitutes the actual prod-

uct. These services are often organisational services, but application ser-
vices (or even infrastructural services) may also be part of a product. This

‘package’ is offered as a whole to (internal or external) customers. ‘Buy-

Business Layer Concepts 97

ing’ a product gives the customer the right to use the associated services.

Generally, the product concept is used to specify a product type. The num-

ber of product types in an organisation is typically relatively stable com-
pared to, for example, the processes that realise or support the products.

‘Buying’ is usually one of the services associated with a product, which re-

sults in a new instance of that product (belonging to a specific customer).
Similarly, there may be services to modify or discontinue a product.

Travel Insurance

Claim

registration

service

Customer

information

service

Claims

payment

service

Insurance policyInsurance

application

service

Premium

payment

service

Customer

data mutation

service

"be insured"

(security)

Customerproduct

contract

value

Fig. 5.14. Services grouped into a product.

Contract: a formal or informal specification of agreement that

specifies the rights and obligations associated with a product.

The contract concept may be used to model a contract in the legal sense,

but also a more informal agreement associated with a product. It may also
be, or include, a Service Level Agreement (SLA), describing an agreement

about the functionality and quality of the services that are part of a prod-

uct. A contract is a specialisation of a business object.
The value of a product or service is that which makes some party appre-

ciate it.

Value: that which makes some party appreciate a product or service.

Value can go two ways: it may apply to what a party gets by selling or
making available some product or service, or to what a party gets by buy-

ing or obtaining access to it. Value is often expressed in terms of money,

but it has long been recognised that non-monetary value also is essential to
business: for example, practical/functional value (including the right to use

98 A Language for Enterprise Modelling

a service), and the value of information or knowledge. Although value can

be internally relevant for some system or organisational unit, it is most

typically applied to external appreciation of goods, services, information,
knowledge, or money, normally as part of some sort of customer–provider

relationship.

Similar to the way in which we associate a value with a service, we can
associate a meaning with a data object.

Meaning: the contribution of (the representation of) a business ob-
ject to the knowledge or expertise of some actor, given a particular

context.

In other words, meaning represents the informative value of a business ob-

ject for a user of such an object. It is through a certain interpretation of a

representation of the object that meaning is being offered to a certain user
or to a certain category of users.

5.5 Application Layer Concepts

A typical example of an application layer model is shown in Fig. 5.15, il-

lustrating the use of the central concepts. In the following subsections, we
explain the application layer concepts in more detail. Also, we show how

the relations between the application layer and the business layer can be

modelled.

Policy

administration

Policy

creation

service

Customer

file

data

Insurance

policy

data

Financial

administration

Premium

collection
Policy

creation

data object

application

component

application

service
application

interface

application

function

application

interaction

Fig. 5.15. Example of an application layer model.

Application Layer Concepts 99

5.5.1 Application Structure Concepts

The main structural concept for the application layer is the application

component.

Application component: self-contained part of a system that encap-

sulates its contents and exposes its functionality through a set of in-

terfaces.

This concept is used to model any structural entity in the application layer:
not just (reusable) software components that can be part of one or more

applications, but also complete software applications, sub-applications, or

information systems. This concept is very similar to the UML component.

The interrelationships of components are also an essential ingredient in
application architecture. Therefore, we also introduce the concept of appli-

cation collaboration.

Application collaboration: a collective of application components,

which perform application interactions.

The concept is very similar to the collaboration as defined in the UML 2.0

standard (Object Management Group 2003b).

In the purely structural sense, an application interface is the (logical) lo-
cation where the services of a component can be accessed. In a broader

sense (as used in, among others, the UML definition), an application inter-

face also has some behavioural characteristics.

Application interface: defines the set of operations and events that

are provided by the component, or those that are required from the

environment.

Thus, it is used to describe the functionality of a component. A distinction
may be made between a provided interface and a required interface. The

application interface concept can be used to model both application-to-ap-

plication interfaces, offering internal application services, and application-

to-business interfaces (or user interfaces), offering external application
services.

Also at the application layer, we distinguish the passive counterpart of

the component, which we call a data object.

Data object: a coherent, self-contained piece of information suitable

for automated processing.

100 A Language for Enterprise Modelling

This concept is similar to data objects (in fact, object types or classes) in

well-known data modelling approaches.

5.5.2 Application Behaviour Concepts

Behaviour in the application layer can be described in a way that is very

similar to business layer behaviour. We make a distinction between the ex-

ternal behaviour of application components in terms of application ser-

vices, and the internal behaviour of these components to realise these ser-
vices.

Application service: an externally visible unit of functionality, pro-
vided by one or more components, exposed through well-defined in-

terfaces, and meaningful to the environment.

The service concept provides a way to describe explicitly the functionality

that components share with each other and the functionality that they make

available to the environment. The concept fits well within the current de-
velopments in the area of, for example, Web services. The term ‘business

service’ is sometimes used for an external application service, i.e., applica-

tion functionality that is used to directly support the work performed in a
business process or function, exposed by an application-to-business inter-

face. However, we reserve the term ‘business service’ for services pro-

vided by the business layer to the environment. Internal application ser-

vices are exposed through an application-to-application interface.
Application services expose application functions to the environment.

Application function: the internal behaviour of a component

needed to realise one or more application services.

In analogy with the business layer, a separate ‘application flow’ concept is
conceivable as the counterpart of a business process. However, for the

moment we have decided not to include this as a separate concept in our

meta-model. Application functions model the internal behaviour of an ap-
plication; for the collaborative behaviour of applications, we use applica-

tion interactions.

Application interaction: the behaviour of a collaboration of two or

more application components.

The UML 2.0 standard (Object Management Group 2003b) also includes

the interaction concept. An application component is external behaviour

Technology Layer Concepts 101

from the perspective of each of the participating components, but the be-

haviour is internal to the collaboration as a whole.

5.5.3 Business–Application Alignment

The application layer and the business layer can be easily linked in Ar-

chiMate (Fig. 5.16). Two types of relations provide this link:

1. Application services can be used by business behaviour and application

interfaces are used by business actors roles, i.e., there is a support rela-
tion between the application and business layers.

2. Data objects can realise business objects; this means that a data object is

an electronic representation of the business object, i.e., there is an im-
plementation relation between the application and business layers.

 Handle Claim

Register PayValuateAccept

Customer

administration

service

Payment

service

Claims

administration

service

CRM

system

Policy

administration

Financial

application

Notification

Notification

data

Fig. 5.16. Example of a business–application alignment model.

5.6 Technology Layer Concepts

A typical example of a technology layer model is shown in Fig. 5.17, illus-

trating the use of the central concepts. In the following subsections, we ex-

plain the technology layer concepts in more detail. Also, we show how the

relations between the technology layer and the application layer can be
modelled.

102 A Language for Enterprise Modelling

Claim

files

service

zSeries mainframe

Customer

files

service

Sun Blade

infrastructure service

artifact

devicesystem software network

DB2

database

iPlanet

app server

Financial

application

EJBs

Fig. 5.17. Example of a technology layer model.

5.6.1 Technology Structure Concepts

The main structural concept for the application layer is the node.

Node: represents a structural entity in the technology layer.

It is identical to the node concept of UML 2.0. It strictly models the struc-

tural aspect of an application; its behaviour is modelled by an explicit re-

lationship to the behavioural concepts. Nodes offer their functionality

through infrastructure interfaces.

Infrastructure interface: the (logical) location where the infra-

structural services offered by a node can be accessed by other nodes

or by application components from the application layer.

Nodes come in two flavours: device and system software, both taken from
UML 2.0 (the latter is called execution environment in UML and is a bit

more restrictive).

Device: a physical computational resource, upon which artifacts
may be deployed for execution.

System software: the software environment for specific types of
components and data objects that are deployed on it in the form of

artifacts.

Technology Layer Concepts 103

Typically, a node will consist of a number of sub-nodes; for example, a de-

vice such as a server and an execution environment to model the operating

system.
The interrelationships of components in the technology layer are mainly

formed by communication infrastructure.

Communication path: the relation between two or more nodes,
through which these nodes can exchange information.

Network: the physical realisation of a communication path, i.e., a

physical communication medium between two or more devices.

Artifacts are used to model the representation, in the form of, for example,
a file, of a data object or an application component, and can be assigned to

(i.e., deployed on) a node.

Artifact: a physical piece of information that is used or produced in
a software development process, or by deployment and operation of

a system.

The artifact concept has been taken from UML 2.0.

5.6.2 Technology Behaviour Concepts

The technology layer provides infrastructure services to be used by ap-
plications.

Infrastructure service: externally visible unit of functionality, pro-
vided by one or more nodes, exposed through well-defined inter-

faces, and meaningful to the environment.

Infrastructure services can be classified into three main types (Fig. 5.18):

− processing services;

− data storage and access services;

− communication services.

These services correspond to the three main types of physical infrastruc-

ture: computing devices, storage devices, and networks.
Infrastructure services are realised by infrastructure functions, although

modelling the internal behaviour of infrastructure components such as

routers or database servers adds a level of detail that is generally not rele-
vant at the enterprise level of abstraction. We have therefore omitted these

from our language.

104 A Language for Enterprise Modelling

Infrastructure

service

Processing

service

Storage

service

Communication

service

Fig. 5.18. Three types of infrastructure services.

5.6.3 Application–Technology Alignment

The technology layer and the application layer can also be linked very eas-

ily. Similar to business–application alignment, two types of relations pro-

vide this link:

1. Infrastructure services can be used by application functions and infra-
structure interfaces are used by application components, i.e., there is a

support relation between the technology and application layers (Fig.

5.19).
2. Artifacts can realise data objects and application components, i.e., there

is an implementation relation between the technology and application

layers (Fig. 5.20).

Artifacts play a central role in showing how ‘logical’ application compo-
nents are realised by ‘physical’ components (modelled as artifacts). A sin-

gle physical component may realise multiple logical components and, con-

versely, multiple physical components may be used to realise a single
logical components. A small example is shown in Fig. 5.20.

Mainframe

DBMS (DB2)
Message

Queuing

Messaging

service
Data access

service

Policy

administration

Financial

application

CRM

application

Fig. 5.19. Example of applications supported by infrastructure.

Relations 105

Integrated Web access

Policy adm inistration

Policy data

management

Customer

data access

Claim data

management

Web access

Client-side

(browser)

Web access

Server-side

(JSP)

Custom er data

Business logic

(EJB)

Policy data

Business logic

(EJB)

Claim data

Business logic

(EJB)

Custom er data

Persistence

(EJB)

Policy data

Persistence

(EJB)

Claim data

Persistence

(EJB)

DBMS

(DB2)

Logical

Physical

Fig. 5.20. Example of an application deployed on the infrastructure.

5.7 Relations

As we argued before, enterprise architecture is, above all, about the de-
scription of coherence: coherence within different domains but also the

coherence among domains. Therefore, in contrast to many other modelling

languages, a limited set of clearly defined relation concepts has been de-
fined. In the examples throughout this chapter, most of the relations have

already been used. In this section, we summarise them and show some of

their properties. As we did for the concepts used to describe the different
conceptual domains, we adopt corresponding relationship concepts from

existing standards as much as possible. For instance, relationship concepts

such as composition, association, and specialisation are taken from UML,

while triggering is used in most business process modelling languages,
e.g., ARIS and BPMN.

The structural relations, summarised in Table 5.1, form an important

category of relations to describe coherence. The relations (with the excep-
tion of grouping) are in ascending order by ‘strength’: association is the

weakest structural relation; composition is the strongest structural relation.

An abstraction rule that can be derived from this is that a ‘chain’ of struc-

tural relations (with intermediate model elements) can be replaced by the
weakest structural relation. For a more precise description and derivation

of this rule we refer to Van Buuren et al. (2004).

106 A Language for Enterprise Modelling

Table 5.1. Structural relations.

Association

Association models a relation between objects that is

not covered by another, more specific relationship.

Access

The access relation models the access of behavioural

concepts to business or data objects.

Used by

The used by relation models the use of services by

processes, functions, or interactions and the access

to interfaces by roles, components, or collaborations.

Specialisation

The specialisation relation indicates that an object is

a specialisation of another object.

Realisation

The realisation relation links a logical entity with a

more concrete entity that realises it.

Assignment

The assignment relation links units of behaviour

with active elements (e.g., roles, components) that

perform them, roles with actors that fulfil them, or

artifacts that are deployed on nodes.

Aggregation

The aggregation relation indicates that an object

groups a number of other objects.

Composition

The composition relation indicates that an object

consists of a number of other objects.

Grouping

The grouping relation indicates that objects belong

together based on some common characteristic.

With this rule, it is possible to determine the ‘indirect’ relations that ex-
ist between model elements without a direct relation, which may be useful

for, among others, impact analysis. An example is shown in Fig. 5.21: as-

sume that we would like to know what the impact on the client is if the

CRM system fails? In this case, an indirect ‘used by’ relation (the thick ar-
row on the left) can be derived from this system to the ‘Claim registration

service’ (from the chain ‘assignment – used by – realisation – used by –

realisation’). No indirect (structural) relation exists between the CRM sys-
tem and the ‘Claims payment service’.

Any concept may be used in a nested way: that is, a concept may consist

of ‘smaller’ concepts of the same type, e.g., a business actor may consist of
sub-actors, a service may consist of sub-services, an application compo-

nent may consist of sub-components, etc. Depending on the context (and

possibly the chosen view), nesting formally denotes an aggregation or a

composition relation (i.e., the concept aggregates or is composed of sub-
concepts of the same type). See, for example, the model of Fig. 5.21, in

which the claim handling process is composed of three subprocesses.

Relations 107

 Handle Claim

Register PayValuateAccept

Customer

administration

service

Payment

service

Claims

administration

service

CRM

system

Policy

administration

Financial

application

Customer

information

service

Claims

payment

service

Claim

registration

service

Client Insurant

Derived

relation

Fig. 5.21. Example of a derived relation.

Nesting of concepts of different types usually denotes an assignment rela-
tion, e.g., the processes assigned to an actor are drawn inside that actor, or

the artifacts assigned to (deployed on) a node are drawn inside the node.

For behaviour modelling, in addition to the structural relations, we may
also use behavioural relations, summarised in Table 5.2. The triggering re-

lation models the ‘control flow’ in a process, while the flow relation, in-

spired by Steen et al. (2002), models the flow of information, data, goods,

or value, typically between functions. It is also allowed to abstract from
behaviour elements and use the flow relation between structural elements.

As there may be information associated with a triggering relation, trigger-

ing can be considered a stronger form of the flow relation, i.e., a flow that
is intended to trigger behaviour.

The use of the dynamic relations is illustrated in Fig. 5.22. When assess-

ing a loan request, a check for the creditworthiness of the customer is
needed. With a request for the required credit information, the ‘Assess loan

request’ subprocess triggers the ‘Check credit-worthiness’ subprocess.

This is modelled by a triggering relation. The ‘Check credit-worthiness’

subprocess sends the requested credit information back, in this case; how-
ever, this information does not trigger any new behaviour, therefore it is

modelled by a flow relation.

108 A Language for Enterprise Modelling

Table 5.2. Behavioural relations.

Triggering

The ‘triggering’ relation describes the temporal or causal relations

between behavioural elements, interactions, and events.

Flow

The ‘flow’ relation describes the exchange or transfer of, for exam-

ple, information, goods, or value between processes, function, inter-
actions, and events.

Junction

A ‘junction’ is used to connect dynamic relations of the same type. It

can be used to model splits or joins of triggering or flow relations.

Process loan request

Assess loan

request

Check credit-

worthiness

Credit info
Loan

request

Fig. 5.22. Triggering and flow.

5.8 Modelling Example

To illustrate the use of our modelling language, we introduce the fictitious

(though realistic) insurance company ArchiSurance. ArchiSurance origi-

nally provided home and travel insurance, but merged recently with two
other insurance companies, PRO-FIT (car insurance) and LegallyYours

(legal aid insurance). By streamlining their operations and removing dupli-

cation, substantial synergy is expected from this merger.
ArchiSurance’s management is now wrestling with the intricacies of in-

tegrating these three companies, and has decided to take an enterprise ar-

chitecture approach to create more insight into this complexity. To provide
a high-level overview of ArchiSurance’s primary operations, the company

is described in terms of its main business functions:

− Maintaining Customer Relations and Intermediary Relations: these busi-

ness functions are responsible for the contacts of ArchiSurance with its

customers and the intermediaries that sell its products. This function
handles customer questions and incoming claims, and performs market-

ing and sales.

− Contracting: this function does the ‘back-office’ processing of contracts.

It performs risk analysis and ensures legally and financially correct con-
tracts.

Modelling Example 109

− Claims Handling: this function is responsible for handling insurance

claims.

− Financial Handling: this function performs the regular premium collec-

tion, according to the insurance policies with customers as produced by

Contracting, and handles the payment of insurance claims.

− Asset Management: this function manages the financial assets of Archi-

Surance, e.g., by investing in stocks and bonds.

These business functions, shown in Fig. 5.23, are very similar for most in-

surance companies and represent what is most stable about this type of en-
terprise.

Insurer

Maintaining

Intermediary

Relations

Contracting

Financial

Handling

Claims

Handling

Maintaining

Customer

Relations

Asset

Management

Fig. 5.23. ArchiSurance business functions.

Post-merger integration is in full swing. The first step in the integration

process has been the creation of a unified front office, comprising depart-

ments for managing relations with customers on the one hand, and inter-
mediaries on the other hand. However, behind this front office are still

three separate back offices:

− Home & Away: this department was the original pre-merger ArchiSur-

ance, responsible for home and travel insurance.

− Legal Aid: this is the old LegallyYours, responsible for legal aid and li-

ability insurance.

− Car: this department is the core of the old PRO-FIT and handles car in-

surance, including some legal aid.

110 A Language for Enterprise Modelling

Furthermore, ArchiSurance is in the process of setting up a Shared Ser-

vice Centre for document processing, which will handle all document

streams and performs scanning, printing, and archiving jobs. The com-
pany’s structure is shown in Fig. 5.24.

ArchiSurance

Back Office

Front Office

Home

&

Away

Car
Legal

Aid

Customer

Relations

HRM
 Product

Development
 Finance

Intermediary

Relations

Document

Processing

SSC

Fig. 5.24. ArchiSurance departments.

As in many other recently merged companies, IT integration is a prob-

lem. ArchiSurance wants to move to a single CRM system, separate back-

office systems for policy administration and finance, and a single docu-
ment management system. However, Home & Away still has separate sys-

tems for the policy administration and the financial handling of premium

collection and claims payment, and uses the central CRM system and call
centre. The Car department has its own monolithic back-office system, but

uses the central CRM system and call centre. The Legal Aid department

has its own back- and front-office systems (Fig. 5.25).

Modelling Example 111

Front office

Legal AidCarHome & Away

Home & Away

Policy

administration

Home & Away

Financial

application

Car Insurance

application

Legal Aid

backoffice

system

Web

portal

Call center

application
CRM application

Legal Aid

CRM

Bank

system

Fig. 5.25. Applications grouped according to departments.

An important prerequisite for the changes in ArchiSurance’s IT is that
the IT integration should be ‘invisible’ to ArchiSurance’s clients: products

and services remain the same. However, this is not a straightforward re-

quirement. To illustrate the complexity of the relationships between prod-
ucts, business processes, and IT support, Fig. 5.26 shows the services pro-

vided by the Handle Claim business process, and Fig. 5.27 shows the

relations between this business process and its supporting IT applications.
Note that this only shows these relations for a single business process. In

general, many different business processes within the back office link the

external products and services with the internal systems. This web of rela-

tions creates a major problem if we want to create insight into the IT sup-
port of ArchiSurance.

112 A Language for Enterprise Modelling

Handle Claim

Regist er PayValuat eAccept

Claim
registration

service

Customer
information

service

Claims
payment

service

Customer

Damage
occurred

Fig. 5.26. Services provided by the Handle Claim business process.

ArchiSurance Service Bus

 Handle Claim

Register PayValuateAccept

Home & Away
Policy

administration

CRM

application

Home & Aw ay
Financial

application

Customer

information

service

Claim

information

service

Customer

administration

service

Claims

administration
service

Payment
service

Printing

service

Scanning

service

Document

management
system

Bank
system

Money transfer

service

Fig. 5.27. Relations between the Handle Claim business process and its IT sup-

port.

Summary 113

5.9 Summary

A well-defined language for enterprise architecture modelling helps to

reach a common understanding between different architects and other
stakeholders in an enterprise. It allows for the integration of architectural

models and detailed designs within specific domains, which is a prerequi-

site for the integration of domain-specific modelling tools. In this way, en-
terprise architecture models may serve as a starting point for model-driven

system development. They also provide the basis for visualisation and

analysis of architectures.
Service orientation plays a central role in the enterprise modelling lan-

guage we presented in this chapter, where the service concept is applicable

at several layers: business services made available to internal or external

customers, application services made available to ‘the business’ or to other
applications, and infrastructure services made available to applications.

Services provide a way to show the alignment between the different mod-

elling layers.
This emphasis on service orientation is but one aspect of the strong fo-

cus we put on the relations between the different domains and aspects of

the enterprise. Integrating these is essential for providing coherent de-

scriptions of enterprise architectures.
In this chapter, we have only described the essentials of the language. A

more extensive description of its background and details can be found in

Jonkers et al. (2004a, 2004b).

6 Guidelines for Modelling

This chapter will help you create good enterprise architecture models. To
do so, we discuss the act of modelling as a goal-driven activity, the role of

the stakeholders, as well as the modelling process in general. The chapter

focuses on the key aspects of modelling: the use of abstraction levels, the
choice of modelling concepts and relations, and different ways of struc-

turing and visualising models. The results are presented in the form of

guidelines for modelling and visualisation.

6.1 Introduction

Two architects, without a common method, tend to develop different mod-

els of the same real world. How should we decide what is a good archi-

tecture? Pioneers in the design of complex systems (Dijkstra 1968, Brooks
1975) have described design principles to ensure the conceptual integrity

of a model: ‘It is not enough to learn the elements and rules of combina-

tion; one must also learn idiomatic usage, a whole lore of how the ele-
ments are combined in practice. Simplicity and straightforwardness pro-

ceed from conceptual integrity. Every part must reflect the same

philosophies and the same balancing of desiderata. […] Ease of use, then,

dictates unity of design, conceptual integrity’ (Brooks 1975).
Conceptual integrity is the degree to which a model can be understood

by a single human mind, despite its complexity. The core idea of concep-

tual integrity is that any good design exhibits a single, coherent vision,
which is easy to understand by others. This allows someone with a limited

knowledge and understanding of a model to understand easily yet un-

known parts of the model. In emphasising the role of the ‘single mind’,

this design principle clearly advocates the important role of an architect in
any larger design project.

To ensure conceptual integrity, one can use subordinate design princi-

ples such as: do not link what is independent (orthogonality), do not intro-
duce multiple functions that are slightly divergent (generality), do not in-

troduce what is irrelevant (economy; sometimes denoted as parsimony),

116 Guidelines for Modelling

and do not restrict what is inherent (propriety). The literature on quality re-

quirements for models shows a broad consensus about the general applica-

bility of these heuristics (Krogstie et al. 1995, Lindland et al. 1994, Teeuw
and Berg 1997). Applying these design principles increases the internal

quality of a model (Teeuw and Berg 1997).

Additionally, the quality of an architecture is also determined by its
stakeholders: we state that an enterprise architecture that is a ‘correct’ and

‘complete’ representation of the real-life enterprise that is being modelled,

given the objectives of stakeholders, has a high external quality. In short,

external quality refers to the fitness for use of a model (Biemans et al
2001).

Notwithstanding this, the quality of many architectures is often also de-

termined by less rational choices. As Rechtin and Maier state about the po-
litical process (1997, p. 206): ‘The best engineering solutions are not nec-

essarily the best political ones’.

In enterprise architecture, as in other design ventures, these general
principles are of course very valuable. However, the broad scope, and

wide-ranging nature of enterprise architecture make the ideal of conceptual

integrity particularly difficult to achieve.

There is no such thing as an inherently good – or inherently bad –
model. To assess the quality of an architecture model, you have to take

into account for what purpose the model is created and who the target au-

dience is. Different purposes and different target audiences may require
fundamentally different models: while an IT manager may wish to have an

overview of the system software, the devices it runs on, and the communi-

cation paths between these devices, the manager of a company may wish
to have an overview of the products the company produces and the ser-

vices they depend on. Nevertheless, it is possible to formulate generic

guidelines that help to make clear and useful models, comparable to the

guidelines that the TOGAF Architecture Development Method (The Open
Group 2002) formulates (see also Chap. 2).

This chapter provides such guidelines for our approach, founded on a

basic theoretical view of enterprise architecture modelling. After intro-
ducing this view and its implications, the chapter continues with a discus-

sion of general aspects of readability and usability of models. The last part

of this chapter provides guidelines for creating models in the ArchiMate

language that was introduced in Chap. 5, and discusses issues such as what
to capture in an ArchiMate model, how to structure such models, and how

to present them.

The Modelling Process 117

6.2 The Modelling Process

A model, in the context of this book, is an unambiguous, abstract concep-
tion of some parts or aspects of the real world (see Sect. 3.2.3). Models fo-

cus on specific aspects of the real world, based on the purpose for which

the model is created. Hence, modelling is part of a goal-driven communi-
cation process, as discussed in Chap. 4.

In enterprise architecture, modelling typically involves creating abstract

representations of enterprises: the business processes involved, the IT-in-
frastructure, as well as the relations between them. Given a specific goal

and focus, an enterprise architect decides which aspects of an enterprise

are relevant and should be represented in the model. Examples of aspects
that are frequently included in enterprise architecture models are: products,

business processes, applications and IT-infrastructure elements, as well as

their relations. As such, an enterprise architect gathers relevant information
and transforms this into a model; the aim of this chapter is to provide you

with design guidelines for this process.

6.2.1 Modelling as a Transformation Process

First, we go back to some fundamental issues discussed in Chap. 4 and link
these up with a view of the modelling process.

Architecture models are created in order to communicate something, ei-

ther to the people reading the model or between people making the model.
But communication also has its underlying goal: the participants are to in-

troduce, agree on, and commit to some knowledge representation. This

means that the model that is the result of a modelling process is not the ul-
timate goal, and not even the only product of that process. Transformations

in the knowledge, agreements, and commitments in the minds of the peo-

ple involved are as important, if not more important, than the repre-
sentations (models). So the goals underlying the modelling process are es-

sentially knowledge goals, and (the creation of) models should be directly

aimed at fulfilling those knowledge goals. From this point of view, then,
the modelling process concerns a transformation of knowledge, agree-

ments, and commitments (the knowledge state of the participants) and of

the central representations used as a tool in this transformation: the mod-
els. This is depicted graphically in Fig. 6.1 below. The input of the process

consists of the knowledge state of participants involved in the modelling

process, and possibly of one or more existing models (or related descrip-
tions, e.g., texts).

118 Guidelines for Modelling

Knowledge

Agreements

Commitments

(Model)

Way of Modelling

O
U
T
P
U
T

IN
P
U
T

Knowledge

Agreements

Commitments

Model

Way of Modelling

Knowledge goals & Guidelines

Modelling

Process

Fig. 6.1. Knowledge goals and modelling guidelines steer the modelling process.

Note, however, that a third sort of input/output is included in Fig. 6.1:

the ‘Way of Modelling’ (WoM). As we described in Sect. 3.2.5, the WoM
refers to the meta-model and the concepts that the modellers work with. As

modelling progresses, the participants may or may not decide that more, or

different, meta-concepts are needed to answer the questions that are asked.

For example, they may decide to start using the concept ‘service’, or a spe-
cialisation of that concept fit for their specific modelling context. Such

changes in the WoM are commonplace during modelling and are, in most

cases, not an undesirable action due to bad WoM choices earlier on. It
cannot easily be foreseen what precise WoM will be needed. In fact, find-

ing out the best WoM for a model is an inherent part of the process as

such.
The knowledge goals steer the modelling process, or should do so. Of

course, these goals depend on the modelling context. However, there are

also a number of principles that hold more generally. They can be boiled

down to modelling guidelines. The combined knowledge goals and model-
ling guidelines are what should guide each and every step of the transfor-

mational process.

6.2.2 Basic Modelling Activities

In a modelling process, you carry out different types of activities. This sec-
tion describes these activities and a logical order to perform them in. How-

ever, real-life modelling processes are not linear, but iterative and highly

interactive: an architect will discuss design decisions and intermediate ver-
sions of the model with various stakeholders and, as a result, repeat some

activities, perform activities in a different order, combine or even skip ac-

tivities. We distinguish the following activities in a modelling process:

The Modelling Process 119

− Establishing the purpose, scope and focus. Modelling is a goal-driven

activity. So initially, an architect should determine who the stakeholders

and are what the purpose of the model is, in relation to these stake-

holders. As described in Sect. 1.3, a business strategy often forms the
starting point to establish the modelling purpose. Typical purposes of

enterprise architecture models are to provide (1) insight into processes,

IT infrastructure, and their alignment, (2) a basis for business process
redesign, (3) a basis for application (re)design, (4) a basis for infrastruc-

ture (re)design, and (5) a basis for business–IT alignment. Related to the

purpose, you have to decide on the scope and focus of the model: (1)
what part of reality will be described in the model (e.g., only the pri-

mary processes), (2) what aspects will be described, and (3) with what

level of detail? Note that models can be applied to describe the current

situation ‘as is’ as well as the situation ‘to be’, possibly including the
required transition.

− Selecting one or more viewpoints to create the model. Architects cre-

ate models using viewpoints, such as the ones described in Chap. 7.

These viewpoints give a set of concepts and relations to be used during
the modelling process. As such, they guide you in determining what in-

formation should be included in the model, given the stakeholder, the

purpose for which the model is created and the focus. In our approach,

we typically use the design viewpoints described in Chap. 7 to create a
model, but this can also be done using the other types of viewpoints.

− Creating and structuring the model: In this stage you gather the re-

quired information, and create, structure, and visualise the enterprise ar-

chitecture model. The actions of creating and structuring a model are
strongly related and should not be performed in isolation.

• Enterprise architecture is hardly ever performed in a green field situa-

tion: typically, business process models, information models, or infra-

structure models about (parts of) the enterprise already exist. A main
objective of enterprise architecture is to reveal the relations between

the different domains, and to provide a high-level overview. As such,

you should always check the validity of any existing models, and in-

corporate their information on an appropriate level of abstraction;
domain-specific models provide more details about parts of the enter-

prise than an enterprise architecture model. As such, an enterprise ar-

chitecture model should, for example, not be considered a replace-
ment for the existing information models or business process models.

• You can elicit the additional information you need for example by us-

ing interviews or by discussing scenarios of the situation ‘to be’ with

stakeholders.

120 Guidelines for Modelling

• Based on this information, you create and structure a model. Creating

a model is done via the modelling actions, described in the following

section. The purpose of structuring the model is to reduce its (visual)

complexity, which makes it easier to recognise and understand. Struc-
turing a model also helps to discover recurring patterns as well as in-

consistencies. There are many ways to structure models. One type of

structuring that is frequently applied in enterprise modelling is to
structure the model around one key concept: structuring your model

around services is for instance practical if the model should reveal the

links between business processes and application components that are
in use. Another type of structuring frequently used in business proc-

ess descriptions reveals the flow of processes that are triggered by an

event or an activity. More examples of this are given in Sect. 6.3.4.

• In our approach, you create a model via one or more (visual) repre-

sentations, in accordance with a selected viewpoint. You have to de-
cide, depending on the modelling purpose and the stakeholders, what

(visual) representations to apply for the various concepts and rela-

tions, how to structure the visualisation, and, for instance, what col-
ours to use. While in some exceptional cases a textual representation

of a model may be preferred, our approach focuses on visual rep-

resentations of enterprise architecture models.

− Visualising the model: Depending on the types of stakeholders and

their needs, you select one or more appropriate ways to visualise the
model. The enterprise architecture approach presented in this book ad-

vocates one central model, which is visualised in different ways, for dif-

ferent purposes. Graphical viewpoints, like those described in Chap. 7,
form a useful starting point to visualise models, although other represen-

tations, such as text and tables, are also possible.

− Using the model: At this stage, you use the representation of the model

to communicate with the stakeholders. Independent of whether the
model is meant as a basis for designing, deciding, or just to inform

stakeholders, you have to assess whether the model and the selected

visualisation achieve the intended result. Section 6.3.5 describes which

breakdowns can occur in this process, and how to handle them. The
typical steps in using visual representations are:

• Validation. You can validate a model indirectly, by checking whether

the stakeholders agree that the views created from this model are cor-

rect representations of the actual or intended situation.

• Obtaining commitment from the key stakeholders. After reaching

agreement, the key stakeholders have to commit themselves to the

(potential) impact of what is described.

The Modelling Process 121

• Informing the other stakeholders.

These steps will be described in more detail Sect. 7.4.2.

− Maintaining the model: A modelling process is iterative. In the early

stages of modelling, you discuss intermediate, but stable, versions of the

model with stakeholders. These iterations help in getting a clear under-
standing of the purpose of the modelling process, the concerns of the in-

dividual stakeholders, and the degree to which the model helps in

achieving this purpose. Such discussions may for instance reveal places
in the model that have to be updated, and places where the model in-

cludes too much or too little detail. Also in later stages of the modelling

process iterations remain crucial: if the enterprise architecture model is
not kept up to date it loses its value for the stakeholders. As such, the

model should be maintained to reflect, for instance, changes in the infra-

structure, the business processes, or the enterprise’s products. Conse-

quently, maintaining an existing model may also be the purpose of an
enterprise architecture process.

After providing some more theory about modelling and the types of mod-

elling actions, we continue the chapter with a discussion of the most rele-
vant principles guiding the design choices in a modelling process.

6.2.3 Types of Modelling Actions

There are a virtually endless number of ways in which an enterprise archi-

tect can go about creating or changing the contents of a model. Even so,
there are a limited number of basic, general types of modelling actions that

can be distinguished with respect to the detailed actions we perform while

modelling. This section describes these types of modelling actions, thereby
providing a vocabulary for talking and reasoning about how concepts and

relations are handled during modelling. This is of course closely related to

modelling decisions that are taken. Without wanting to prescribe specific

causes of action during modelling, we believe it is useful to introduce
terms that enable us to discuss the basic actions of modelling, but also –

and even more importantly – help architects to think in these terms, and to

externalise some of the intuitive decision making and acting they have al-
ways been doing as they were modelling. In other words, this can help you

to become more aware of what you are doing, and think about it more ex-

plicitly and rationally.

The basic types of modelling actions that we distinguish are listed be-
low; some modelling actions are sub-classified. In this overview, model-

ling actions are operations on concrete concepts and relations from the

domain that is being modelled; as such, these concepts and relations can be

122 Guidelines for Modelling

considered instances of the concepts and relations that are defined in the

ArchiMate language.

We also provide some typical questions that you could reflect on as you
make your modelling decisions. These questions should be seen as ‘guide-

lines for reflection’; they provide concrete examples of what aspects of

your modelling actions you might need to reflect on.

− Introduce a candidate element in the model.

By this we mean simply the act of placing a fresh term for a concept or

relation within the model. It may not even be linked (related) to any-

thing, it just seems ‘somehow relevant’. It may be changed or even de-
leted later on. Note that such an element may at this point be just some

unclassified item with a name on it. It may be refined later on. The main

questions one might ask here is: why this element, why not another one,

or perhaps not do it at all? Why is it relevant? Why give it this particular
name?

− Refine an element in the model.

This corresponds to adding detail to the element. Note that a model can

of course also be refined by introducing elements. Refining an element
can take two main forms:

• Classify the newly introduced (candidate) element. You classify a yet

unclassified element, or may have thought of a more specific classifi-

cation, or simply a better one. Classifications are of course selected

from the meta-concepts used, so that depends on the modelling con-
text. You may even decide to select a classification not used so far,

which amounts to extending the WoM used. Why this classification?

For reclassification: what was wrong with the old classification?

• Provide a description of the element in another way than adding more

elements, for instance by:

• Adding internal detail to an element: for example, add attributes to

a business object, or cardinality to a ‘used by’ relation. Why this

instead of introducing a new element?

• Writing a definition or gloss kept outside the model: for example,

in a dictionary. Why this instead of expressing the definition by

modelling it? Why define at all? Will anyone (including you!) ever

read the definition?

• Nesting models: elaborate on an element by introducing another

model – ‘zooming in’. (This action is related to abstraction as de-
scribed below, but concerns adding detail instead of hiding it.)

Why not include those details in the actual model; what is the rea-

son for using multiple levels in your model?

The Modelling Process 123

− Abandon a model element.

This is an action that is harder and more complex than it may look. Of

course, concepts and relations (or internal details, for that matter) can be

simply scrapped and deleted if they turn out to be ‘wrong’. However,
especially if a model has been around for a while, it may be a good idea

to make an explicit (even communal) decision to abandon a concept or

relation, in order to avoid the concept ‘lingering around’. There is a dif-
ference between just throwing away a model element and saying a

proper and noted ‘goodbye’ to it. A record of this potential but rejected

element might be kept somewhere, as a ‘lesson learned’. Why is this
element no good? Do we want to abandon it or abstract from it?

− Abstract from a concept or relation.

Importantly, this action is quite different from abandoning a concept, or

scrapping some detail. Abstraction rather is the opposite of refinement.

Abstraction can take place at two levels: abstract the whole concept
or relation or some internal detail. In either case, you decide that some

information that is available to you is to be left out of the model. You

may want to keep the information (because it is not ‘wrong’ as such),
but ‘hide’ it (perhaps describing it somewhere else). The trick here is to

‘show information on demand’. Why do you not want to show this par-

ticular information? Hide this detail (keeping the information some-

where) or throw it away entirely?

So far we have introduced some helpful terms for describing the basic ac-

tions involving model elements. However, enterprise architecture model-

ling typically involves a larger context: relations with other models, other
domains, other concerns, etc. You may need to make relations with other

contexts explicit, or even to rephrase some model within some other con-

text. This is why we also distinguish the following modelling action:

− Translate an element.

Translation may of course simply mean finding a fitting alternative for

an interesting element in another model. If so, there is no crucial differ-

ence with introduction or refinement (perhaps combined with abandon-

ment). However, an act of translation has its own special rationale be-
hind it. More importantly, it may need to be documented in order to

keep track of the existing relationship between models/contexts. Also, a

future translation may have to be kept in line with previous translations.
This is why we distinguish the following subtypes:

• Create or replace an element so it matches the meaning of a concept

from another language or context. Why use a translation? Why this

124 Guidelines for Modelling

translation? Why from that particular source model, context, or lan-

guage?

• Link an element to an element in the other model or modelling lan-

guage. Keep some record of this particular link, and the particular
contexts and/or languages it concerns (see also documentation be-

low).

• Link an element to some intermediary language. This is an old trick

in translation. If a model needs to be translated to more than one lan-
guage or context, it may be a problem to find translators with exper-

tise in all combinations of contexts or languages. Instead, you could

first translate to a language or context that is understood by everyone,
and then take the next step. In this case, you may want to keep records

of both the translations to the intermediary language and to the final

target language.

• A translation rule may be specified that enables standardised, coher-

ent translation between some contexts or languages. If translation is
structural, this may be a good thing to do. However, a note of caution

is in order here: translation is a heavily contextualised and subtle

business. If translation rules are too generically applied, gross mis-
translations may occur. To keep on the safe side, translation rules

should preferably be seen as guidelines (time-saving suggestions)

rather than strict and generic rules.

• Based on experiences in previous translations, or in confusion be-

tween contexts/languages, sources of confusion may be listed explic-
itly, for example homonyms and synonyms. These may be part of the

translation rules, but even if no such rules are formulated, particularly

notorious risks may be noted and communicated.

− Document modelling actions. While this will often be too much of a

burden (automation may help here, of course), documentation and ad-

ministration of all or some modelling actions may be useful. Why

should you document a modelling action, if at all, and what aspects of
it? There are several reasons to do so:

• To be able to ‘undo’: you may simply regret a decision and backtrack

to a previous state. Of course, many modelling tools have this option.

• To revisit rejected alternatives.

• To record modelling rationales related to traceability, accountability,

etc. of the modelling process.

• To add conceptual meta-data. It may be interesting to keep track of

who did what with a model element, and where it occurs:

− In which language/context/model is the element used? Is it part of

any standard?

Guidelines for Modelling 125

− Who first introduced the element?

Translation records and rules may also be linked in here.

6.3 Guidelines for Modelling

The main guideline for modelling results from our notion of modelling as a
goal-driven activity (Chap. 4) is the following:

A model has to provide answers to questions.

Modelling in itself is not an objective: a model serves a purpose to answer

some particular questions. Making these questions explicit help you to find
the appropriate scope and focus while creating a model.

Make a clear distinction between a model and its visualisations.

Architects have a tendency to consider a visualisation of a model as the
model itself (see also the remarks in Chap. 3). You should be aware of this

difference and not use visual terms while describing a model. For example,

avoid using terms such as ‘above’ to denote that some concept is more im-

portant than another one.
The processes that underlie the functioning of enterprises are complex

activities that, by definition, contain a large amount of detail. When you

model such activities, you leave out information you feel is unimportant
and emphasise information you feel is essential, given the modelling goal

and target audience. This economy of communication is an example of

obeying Grice’s Maxims (Grice 1975). These maxims have been formu-

lated as heuristics for optimising communication. Since the visualisation of
an enterprise architecture model is a means to communicate information

about an enterprise, these maxims are relevant for us as well. Applying

Grice’s Maxims to enterprise architecture, we interpret them as follows:

Maxim of Quantity:

– Make your model as informative as necessary.

– Do not make your model more informative than necessary.

Maxim of Quality:

– Do not model what you believe to be false.

– Do not model that for which you lack adequate evidence.

126 Guidelines for Modelling

Maxim of Relevance:

– Be relevant (i.e., model things related to the modelling goal).

Maxim of Manner:
– Avoid obscurity of expression.

– Avoid ambiguity.
– Be brief (avoid unnecessary concepts and relations).

– Be orderly.

If you apply these maxims, they will help you to create models that include

appropriate details, given the modelling goal and the target stakeholders.

There are typically multiple stakeholders involved in an enterprise ar-
chitecture and its model. Apart from the enterprise architect, possible

stakeholders include managers, CIOs, CEOs, software developers, and

business process designers. In such settings, the types of stakeholders and

the purpose for which the model is created determine what makes an ap-
propriate model. Always remember that, while the architect determines the

internal quality of a model (e.g., its conceptual integrity), the external qual-

ity of a model is largely determined by the stakeholders, not the architect.
We have obtained a series of such guidelines based on interviews with

enterprise architects, combined with our own experience and information

from the literature. These guidelines are listed below.

Model iteratively.

When modelling an enterprise architecture, use several iterations to discuss

intermediate, stable models with the stakeholders. Use their feedback to

improve the model and to determine parts of the model that do not yet
have the appropriate level of detail.

Model for dynamics.

Models often include real-life aspects that are likely to change over time,

such as a company’s product portfolio. As such, models are dynamic. If
certain changes can be foreseen, architects should add a description of how

the model can change.

Be economical in models.

Model only those concepts and relations that are relevant given the pur-
pose of the model and the type of stakeholders it is intended for.

Guidelines for Modelling 127

Be economical in views.

When communicating with a specific stakeholder, use a view of the model

that only includes the concepts and relations that are relevant for that
stakeholder.

Make concepts recognisable.

Indicate concepts in a model by the same names the stakeholders apply to

those concepts.

Make structures recognisable.

Use the same type of structuring that the stakeholders apply: if the stake-

holders for instance describe their business in terms of a process with vari-

ous steps, make sure this process and the individual steps are clearly pre-
sent in the model.

Make a model consistent.

In a model, apply the same type of concepts to denote the same type of

elements from the real world. Model similar relations in a similar manner.
Use the same terms to denote the same concepts, also in related models.

Keep related models consistent.

In many cases, architects will create a series of related models to model

different aspects of the same enterprise. Coherence between these models
is very important: you should try to avoid conflicts between related models

and use uniform terminology.

Make models as correct and complete as needed.

A model should be a correct representation of something from the real
world, focusing on specific aspects. While models abstract from certain

aspects, the aspects they focus on should be modelled in a correct and

complete manner. In many cases you do not want to create 100% complete
or correct models. Models do not always have to be complete, because

people can easily fill in the gaps. Main structures must be clear, but details

and exceptions are left for the implementation phase. Although not a com-

plete or 100% correct representation of reality, models must be unambigu-
ous.

Treat different concerns orthogonally.

128 Guidelines for Modelling

Different concerns should be addressed in different parts of the model, or

in different, related models.

6.3.1 Before You Start

When you are about to start creating models, i.e., you are about to model

an enterprise architecture, you should ask yourself the following questions:

− Is there a clear stakeholder?

− Is the objective explicit?

− Will creating an enterprise architecture model help to reach this objec-

tive?

− Are the boundaries clear of what you should model?

− Is it clear whether the situation ‘as is’ or the situation ‘to be’ should be

modelled?

− Can you obtain the information needed to create the model?

− Are there realistic expectations regarding your role as an enterprise ar-

chitect in the process?

Only if all these questions can be answered positively should you start the

modelling process. Now the next question is; what to capture in the model?

6.3.2 What to Capture in a Model?

The contents to capture in a model primarily depend on the purpose of the

model and the intended target audience: the stakeholders for which the

model is created. Based on this purpose and target audience, you decide on
a scope and focus: which aspects of the enterprise to include in the model

and what abstraction levels to use?

In deciding the scope of the model, you should focus only on those as-
pects that contribute to the modelling objective. In order to model appro-

priate aspects, the following guidelines can be applied:

Select the design viewpoints that match your objective.

Choose design viewpoints that include all concepts and relations that are of
primary importance to the purpose of the model. If you need to communi-

cate how various business roles contribute to the realisation of one specific

business process, make sure you select a design viewpoint that includes
these concepts. The selected design viewpoints determine which types of

concepts and relations to include in the model.

Guidelines for Modelling 129

Focus.

Only include those elements in the model that directly contribute to the re-

alisation of the modelling objective.

Neglect matters of secondary importance and exceptions.

Initially, assume that no errors occur in the processes you model and that

all processes complete successfully.

Do not be afraid to abandon model elements.

Some aspects or relations that may seem important when you start model-
ling may later on prove to be of secondary importance. For this reason,

models tend to include too much detail and too many aspects after a while.

Do not be afraid to abandon those elements that clutter the model with less
relevant details: even though the resulting model will contain less infor-

mation, it will be more valuable for the stakeholders.

Discuss stable, intermediate versions of the model with the stake-

holders.

As discussed in Sect. 6.2, what to include in a model is determined by its

purpose and stakeholders. As a result, an architect should discuss interme-

diate, but stable, versions of the model with the various stakeholders to get

feedback on the selected concepts and relations, the level of detail, and the
representation applied. Involving stakeholders throughout an enterprise ar-

chitecture process not only increases their commitment, but also contrib-

utes to a higher quality of the resulting models.

Start modelling from a single element.

Depending on the selected design viewpoint, one element (for instance, a

specific role, a service, a process, or a product) is of prime importance.

Form your model around this central element. For instance, in the Appli-
cation Behaviour Viewpoint (Sect. 7.5.12) the provided Application ser-

vice is the central concept. Start modelling by systematically investigating

one concrete application service that is most relevant given your modelling
objective. Investigate all Application functions that contribute to realising

this Application service and all Data objects that are used.

Starting from a single element, you can use the following four meta-

phorical directions (inspired by Veryard 2004) to find other relevant model
elements:

130 Guidelines for Modelling

1. Inwards: towards the internal composition of the element.

2. Upwards: towards the elements that are supported by it.

3. Downwards: towards its realisation by other elements.
4. Sideways: towards peer elements with which it cooperates.

Support

Realisation

C
o
o
p
e
ra
ti
o
n

C
o
o
p
e
ra
tio

n

Composition

Fig. 6.2. Metaphorical directions for viewpoints.

This is illustrated in Fig. 6.2. Of course, this approach can be iterated over
multiple elements in your model.

6.3.3 Modelling and Abstraction

The iterative modelling approach, as described in the previous section,

helps you to handle the complexity of enterprise architecture modelling by
allowing you to use different levels of abstraction. Through the use of ab-

straction levels you can first capture the key concepts and key relations in

an enterprise architecture model, before providing more details.

First capture key concepts and key relations at a high level of ab-

straction.

A high-level enterprise architecture model that only includes key concepts

and key relations forms an appropriate means of communication with the
stakeholders in the early stages of the modelling process: not only does it

show the key concepts and relation, but also it forms a basis to discuss the

purpose and scope of the modelling process. It is of the utmost importance
to agree with the stakeholders on the key concepts and key relations, as

these make up the framework on which the rest of the enterprise architec-

ture model is based.

After reaching an agreement on this high level of abstraction, you can
use various other levels of abstraction to specify the enterprise architecture

model. Each of these levels zooms in on a specific part of the higher-level

Guidelines for Modelling 131

model and allows you to add detail. To benefit from the use of different

levels of abstraction, you have (formally) to identify the levels, each with a

well-defined scope, and maintain consistency among the levels (Biemans
et al. 2001).

Use a limited number of predefined abstraction levels.

Define abstraction levels based on the modelling goals.

Abstraction levels can abstract from aspects, such as physical distribution,
or abstract from details, such as the internal structure of a system. As a re-

sult, refinements of a model can for instance provide more details regard-

ing:

− Implementation: adding details about how behaviour is realised. In the

ArchiMate notation the ‘realises’ arrow indicates this relation.

− Extension: augmenting a model with new elements, such as exceptions.

− Decomposition: adding the internal structure of parts of the model.

In correspondence to the enterprise modelling language chapter, typical

levels of abstraction are the business level (focusing, for example, on busi-
ness objectives, products, and organisational structures), the application

level (focusing, for example, on applications and the services they pro-

vide), and the technology level (focusing, for example, on computer sys-

tems and networks). However, abstraction levels should be chosen depend-
ing on the modelling objective and the concerns of the stakeholders.

Maintaining consistency among abstraction levels is a necessary, but

complex, task. Tool support can help an architect in this task, for instance
by checking whether a detailed description of a part of the model conforms

to a higher-level description.

Keep abstraction levels consistent.

So, in creating an enterprise architecture model, we suggest an iterative
approach, using multiple abstraction levels, where the first iteration is per-

formed in a top-down manner. This top-down first iteration stimulates you

to capture, on a high level, the key concepts and key relations of the model
in relation to the modelling purpose, before looking at lower-level details.

6.3.4 Structuring Models and Visualisations

When a model consists of many concepts and relations, structuring a

model helps to reduce the visual complexity of the model, which makes it
easier for your stakeholders to recognise and understand your model.

132 Guidelines for Modelling

Structuring a model may also help to discover recurring structures, pat-

terns, or inconsistencies.

Especially in an enterprise architecture, which integrates many different
domains, several of these structures will be apparent at the same time.

However, different structures will be dominant in different parts of the en-

terprise architecture. For example, in business processes a temporal struc-
ture will be dominant, whereas functional decomposition is more promi-

nent in the application architecture.

Architecture models may contain different types of structure. Com-

monly used structural dimensions include:

− functionality: functional decomposition;

− time: temporal structure, data flow, control flow;

− usage: dependencies, call graphs;

− location: physical distribution;

− data structure: type/class hierarchies;

− work: units of implementation, module structure.

In structuring any model, the modelling objective is of prime importance:

different types of structure help you to make different aspects of the enter-

prise architecture explicit. If you, for instance, would like to reveal how
various applications contribute to the realisation of the products of an en-

terprise, a grouping based on products may be the most suitable structure.

Below, we give some of the most important and widely used structuring
principles.

Make a model as self-explanatory as possible.

Any part of the model should be specified in such a way that (potential)

users require a minimum amount of additional information about both its
context and its contents to understand what its role in the architecture is.

To achieve this, you should use existing shared understanding: apply the

user’s terminology and build on their existing knowledge.

Separate internal and external behaviour.

This principle is a further elaboration of the previous one. In describing the

behaviour of any system element, you should clearly separate what its en-

vironment perceives and how it operates internally. Thus, the user of that
system element does not need to be concerned with its inner working and

only has to understand what it shows to the outside world. A prime exam-

ple of this principle is the use of the service concept. Following its defini-

tion in Chap. 5, a service should only describe the externally observable
behaviour of a system, not how that behaviour is realised. Such encapsula-

Guidelines for Modelling 133

tion has long been a guiding principle in software development (e.g., see

Dijkstra 1968). It provides a mechanism for being truly platform inde-

pendent, for substituting different implementations with the same external
behaviour, or interchanging different suppliers of services.

Use layers.

Structure the elements in the model in terms of layers, for instance the

business, application, and technology layers as applied in the ArchiMate
language. The link between layers in an enterprise architecture is typically

made explicit via the services one layer provides to the other. An example

is given in Fig. 6.3, which shows the business and application layers joined
by a layer of application services.

Business processes

Application components and serv ices

Ex ternal application serv ices

 Handle Claim business process

Register PayAccept

Customer

administration

service

Payment

service

 CRM

 system

 Financial

 application

Customer

information

service

Claims

administration

serv ice

 Policy

 administration

Claim

information

serv ice

Valuate

Fig. 6.3. Layered model.

Group by phase.

Structure the elements in the model in terms of the time at which they take

place. If the organisation, for instance, distinguishes different phases in a

production process, arranging the enterprise architecture model in terms of

these phases may help your stakeholders to recognise and understand the
model. In Fig. 6.4 for instance, the business functions that come into play

after damage occurs are grouped by the phases in the process.

134 Guidelines for Modelling

Customer

Relations

Claim

Handling

Financial

Handling

Register PayValuateAccept
Damage

occurred

Fig. 6.4. Business functions grouped by phase.

Group by product or service.

Group elements in the model (such as business processes, information, and
actors) that contribute to the realisation of a specific product or service.

Group by information used.

Structure the elements in the model according to the information they have

or need. This can be applied on a technical level, e.g., in a data warehouse
architecture, but also on a business level, as in a business model for an

electronic marketplace or a broker.

Group by physical distribution.

Group elements in the model based on their physical (geographical) loca-
tion, for instance as specific activities take place in a specific region.

Separate independent parts.

Split the model into smaller sub-models of (largely) independent parts of

the enterprise.
While structuring an enterprise architecture may help your stakeholders

to recognise and understand the model, it is also a powerful means to make

the coherence in an enterprise explicit. For instance, the relations that cross
the boundaries in a layered structuring indicate dependencies where one

layer uses information or services provided by another layer. Revealing

coherence, for instance between business roles, business processes, and the
resulting products, is a main objective of many enterprise architecting

processes.

Linked to the different dimensions of structure, a number of elementary

structuring operations can be discerned (Bass et al. 1998), including ab-
straction and separation (e.g., part–whole decomposition, ‘is-a’ decompo-

sition, and replication).

Applying these operations to an architecture has an impact on its quality
attributes, such as performance, scalability, or modifiability. By trans-

forming an architecture using these operations, the qualities of that archi-

Guidelines for Modelling 135

tecture can be influenced. However, since these quality attributes are inter-

related, the end result will always be a compromise between different re-

quirements. It is the task of the enterprise architect to ensure a workable
outcome, both in balancing the needs of the different stakeholders within

the architecture itself and in guiding the process of communication and ne-

gotiation with all these stakeholders.

6.3.5 Constructive Use of Modelling Breakdowns

In communication, a failure to communicate effectively is typically de-

noted as a breakdown. In a modelling process, breakdowns become evi-

dent when – for some reason – a stakeholder does not properly understand
the model. As such, breakdowns should be avoided. Nevertheless, if they

do occur you can use them in a constructive manner. Most importantly,

you should check for readability and effect.

Check for Readability

Readability breakdowns occur when communicating models that are visu-

alised in an inappropriate manner given your stakeholders and the model-

ling goals. Having your stakeholders understand the model is of the utmost
importance, independent of whether your model is meant for designing,

deciding, or informing. This section describes typical breakdowns related

to the readability of models: it states the symptoms (how can you deter-

mine that such a breakdown is occurring?) and possible solutions to repair
the breakdown. We distinguish the following readability breakdowns:

− The model is not understood: Unknown terms and concepts are used.

Symptoms: If asked, the stakeholder cannot explain the model. Further-

more the stakeholder will not show any enthusiasm. A cooperative re-
ceiver will ask questions such as: ‘What do you mean by that? Can you

give an example? What does this term mean?’. In the worst case the re-

ceiver will say the model is useless and ignore it.
Solution: Analyse the stakeholder and use his or her language, terms,

and concepts. It can be useful to build a model using the terms of the

stakeholder or to explain new introduced vocabulary.

− The model is understood in the wrong way.

Symptoms: When asked the stakeholder turns out to have his or her own
conflicting interpretation of the model. The stakeholder will draw

strange conclusions and take initiatives you do not expect.

Solution: Analyse the stakeholder and use his or her language, terms and
concepts. It can be useful to build a model in terms of the receiver or to

explain newly introduced vocabulary.

136 Guidelines for Modelling

− The model has no intuitive structure for the receiver.

Symptoms: The receiver finds it difficult to recall all of the elements of

the model and thinks of it as a bag full of propositions. It is hard to keep

him interested. If the receiver refers to the model, he or she always uses
another representation, e.g., another diagram or another sequence, to ex-

plain the content.

Solution: Copy the structure used by the stakeholder or analyse it to find
out about its underlying logic. Use this logic in the new model.

− The model has an unclear structure or notation.

Symptoms: The structure of the model or the language or diagrams used

causes questions. The receiver will reject the model, although he or she
agrees with its contents. The remarks made only concern the structure of

the model.

Solution: Explain the structure of the model or use structures the re-

ceiver is used to. Introduce new kinds of diagrams describing a well-
known situation to explain the diagram constructs.

− The visualisation of the model distracts from the original message.

Symptoms: Diagrams and colours are so awful or beautiful that nobody

takes any notice of the contents. The form of the model is the only thing
that people remember, not its contents.

Solution: Adjust the visualisation of the model: first give the message as

text, or as a story. Apologise for ugly models.

Check for Effect

Even with a properly readable model, the communication with the stake-

holder may not result in the intended effect. We can identify several typi-

cal breakdowns related to the inability of models to achieve the intended
effect:

− The model or architect lacks status.

Symptoms: The receiver is not willing to listen. He or she is always busy

and cannot make time for you.

Solution: This is a relational breakdown, which needs to be solved be-
fore continuing the process. It is outside the scope of this book to de-

scribe solutions for such organisational issues.

− The model has a true but unwanted message.

Symptoms: There is no room to negotiate. The model is forgotten or de-
liberately misunderstood. Some sort of delaying tactics are used.

Solution: This too is a relational breakdown, which needs to be solved

before continuing the process.

Guidelines for Modelling 137

− The model is irrelevant: The model is true, it is a good representation

of the modelled situation, but it has no relation with the problem.

Symptoms: The stakeholder will ask: ‘Why do you tell me this?’ to

which you have no good reply.
Solution: See ‘the model contains superfluous elements’.

− The model contains superfluous elements: The model is true, it is a

good representation of the modelled situation, and there is a relation

with the problem, but not everything is relevant. The real message is
hidden somewhere in the larger message.

Symptoms: The architect has too much to say, but does not always have

an answer to the question: ‘Why do you tell me this?’.
Solution: Construct and get commitment for a problem description. For

every line and every drawing you should ask yourself: ‘Do I miss some-

thing if I leave this thing out?’ If you are convinced that the model

should include some elements that should be left out considering the
problem description, re-evaluate the problem description together with

the stakeholders.

− The model is too complex. The model may contain relevant informa-

tion, but there is just too much of it.
Symptoms: The stakeholder appears to be puzzled by the model or

spends a lot of time looking at the model.

Solution: Use abstraction levels to allow the stakeholder to zoom in on

or out of parts of the model.

− The model is too vague. The model is true but not very specific. It does

not provide the stakeholder with the desired knowledge.

Symptoms: The stakeholder will not be interested.

Solution: Iterate and create a more concrete model, focusing on the ob-
jective of the stakeholder.

− The model is not sufficiently complete. Not all required information is

included in the model. If the model is part of a sequence, this might not

be a problem.
Symptoms: The model does not provide the stakeholder with all the de-

sired knowledge. The stakeholder will be dissatisfied, as you are not

fully addressing the problem.

Solution: Iterate and create a more complete model, focusing on the ob-
jective of the stakeholder. An architect always has to find a balance in

order to create models that are sufficiently complete, while not being too

complex.

− The model is not true. The model contains incorrect arguments, or in-

accurate or untrue reasoning.

Symptoms: The stakeholder does not agree with the arguments and rea-

138 Guidelines for Modelling

soning used. The stakeholder will dispute the content.

Solution: Gather the required information and check it for correctness.

6.4 Readability and Usability of Models

The prime purpose of enterprise architecture models is to capture and

communicate key functions and key relations of different domains relevant

for enterprises. As such, these models have to be readable and usable,
given their particular purpose and given the stakeholders for which they

are intended. The readability and usability is, to a large extent, determined

by the complexity of the model. While creating models, you should aim
for models with a limited complexity, by reducing:

− the number of elements in the model;

− the number of types of elements in the model;

− the number of relations depicted in the model.

Nevertheless, complex designs and complex relations from the real world

cannot always be captured in models with a limited complexity. In that

case, the use of viewpoints can help to reduce the complexity for stake-
holders. Such viewpoints focus on specific aspects of the model, reducing

the number of elements that are visible, as well as the number of element

types and the number of visible relations. Viewpoints are discussed in de-
tail in Chap. 7.

In order to promote readability and usability of models, visualisations of

models should link the visualisations of model elements with the elements
themselves. This principle is especially important for enterprise architec-

ture models, since these typically integrate different architectural models.

When creating a visualisation of an enterprise architecture model, there

are two conflicting forces. First, the visualisation should state as much in-
formation as possible, given the purpose of the visualisation and the in-

tended stakeholders of the visualisation. Second, the stakeholders of the

visualisation can only handle a limited visual complexity of a presented
model. Balancing these two conflicting forces is an important challenge

when creating a model.

The level of detail must be attuned to the purpose of the model and the

intended stakeholder. A new user's initial focus may be the system as a
whole, with few details. When the user focuses on a specific part of the

model, more detail should be added. When users can zoom in on parts of a

model, navigational information becomes important: users should be pro-
vided with awareness information regarding the current level of abstraction

Readability and Usability of Models 139

and switching between levels of abstraction should be supported. Addi-

tionally, the meaning of the symbols at the given level of abstraction

should be stated.

6.4.1 Reducing the Visual Complexity of Models

Reducing the visual complexity of models is primarily achieved by limit-

ing the number of concepts and relations that are visible in a model. Re-

lated to this, the number of types of concepts and relations should also be
limited. Having different views of models is one means to reduce the vis-

ual and conceptual complexity: given a specific objective and a specific

type of stakeholder, a view only includes those aspects of the model that
are relevant for that situation. Chapter 7 elaborates on the notion of view-

points for design and visualisation, and provides examples of various

viewpoints.
Another solution is the use of abstraction (see Sect. 6.3.3). Humans are

only good at working with models that do not include more than 30 ele-

ments (Horton 1991). Even more restricting is the rule by Miller (1956),

based on the capacity of our short-term memory, which states that humans
are only good at processing seven plus or minus two elements at a time. If

the number of elements in a model exceeds this limit, elements should be

grouped and substituted with an aggregate, abstract object. Based on this
principle, one can create models with different levels of abstraction: on the

highest level, only the key concepts and key relations are shown. Such

high-level models show the essentials of the enterprise architecture and ab-
stract from details, for instance regarding implementation of processes or

distribution aspects. Each concept and relation on this highest level may be

an abstraction for a more complex set of concepts and relations. In a model

with different layers of abstraction, the more detailed concepts and rela-
tions can be reached by zooming in on the composite object. This process

is iterative: in each layer, concepts and relations may in turn be composi-

tions of more detailed concepts and relations. However, to maintain an
overview of the model, enterprise architecture models should not apply

more than three layers of abstraction (Koning 2002).

Within one view and given an abstraction level, the visual complexity of

a model depends for a significant part on how well humans perceive the re-
lations between concepts. To create appropriate visualisations of complex

models a number of generic organising principles can be identified. These

principles, derived from the Gestalt theory of human perception, are par-
ticularly useful for assisting in the representation of relationships that exist

140 Guidelines for Modelling

between different entities in architectural models. They are illustrated in

Fig. 6.5 and explained below:

Proximity

Continuity

Closure

Similarity

Common fate

Fig. 6.5. Examples of the Gestalt principles.

− Proximity: People have a tendency to relate objects that are near to each

other. Therefore, related objects should be placed near to each other in a

model. The proximity rule also applies for colours. Therefore, the colour
of objects in a model can be applied to indicate relations between ob-

jects.

− Continuity: People have a tendency to perceive a line as continuing its

established direction. For example, a cross is perceived as two straight
lines bisecting each other rather than two (or even four) right angles po-

sitioned next to each other. Therefore, right angles should not be posi-

tioned next to each other in a model.

− Closure: People have a tendency to perceive incomplete objects as com-

plete and to close or fill gaps and to perceive asymmetric objects as
symmetric. In general, symmetry and regularity of models increases the

readability of models and reduces the perceived complexity.

− Similarity: People have a tendency to perceive objects that are similar

to each other as belonging together as a unit. As a specialisation of this
principle, people have a tendency to perceive objects with similar size as

being of equal importance: when shown a larger object and a smaller

Readability and Usability of Models 141

object, people have a tendency to perceive the larger object as being

more important.

− Common fate: People have a tendency to perceive different objects that

move or function in a similar manner as a unit. Consider a group of four
similar objects that are perceived as a group: if two objects are rotated,

the group of objects is no longer perceived as one group, but rather as

two pairs.

In the next subsections, we have translated these general principles into a

number of practical requirements, illustrated with some examples.

6.4.2 Representation Conventions

Representation conventions can be applied to increase the ease of under-
standing models. Especially for the experienced user, they may provide

useful clues for the meaning of a model. Using conventions does not influ-

ence the formal meaning of the model. Typical conventions encountered in
textual programming are naming conventions and indentation conventions

for clarifying the nesting structure of the code.

Use of Layout

The layout is one of the most important visual attributes of a model. A
good layout is perceived instantly and almost unconsciously. An unclear,

cluttered layout is distracting and hinders perception of more detailed in-

formation. Putting the objects in a diagram in a pattern that is easily recog-
nisable and fitting to the underlying message is a great aid to the viewer of

the diagram. It very much helps in discerning and remembering which ob-

jects there are and which relationships are relevant. Layout aspects of a

diagram include: basic pattern, horizontal and vertical alignment,
above/before positioning, symmetry, distance of objects from the centre

and from other objects, distribution of white space, distribution of con-

nectors, density of objects and connectors. A basic pattern makes clear to
the viewer what strategy is being followed in positioning objects and what

meaning can be derived from the position of an object. For instance, in a

workflow diagram the activities might be positioned from left to right in

the order of execution and having the same vertical position can mean be-
ing executed in the same stage of the process.

Use white space.

142 Guidelines for Modelling

Providing enough, but not too much, white space makes diagrams elegant.

White space gives room to envision alterations or additions, and in that

way (again) supports reasoning about the diagram.

Distinguish between normal and exceptional cases.

In order to reduce the complexity of a model, it is useful to make a clear

distinction between the normal proceedings and exceptions. This can for

instance be realised by presenting the normal activities within a process at
the same horizontal level, while placing the exceptional activities above or

below that level.

Use symmetry to stress similarities.

Symmetry can be used to suggest or stress similarities between parts of the
model. This is used in Fig. 6.6 to suggest, for example, the similarities be-

tween the two front-office departments and also between the three back-

office departments.

Finance

Home

&

Away

Car Legal

Aid

Customer RelationsIntermediary Relations

Maintaining

Intermediary

Relations

Contracting

Financial

Handling

Claims Handling

Maintaining

Customer

Relations

Asset

Management

Fig. 6.6. Symmetry and similarity.

Model time dependence from left to right.

Readability and Usability of Models 143

By letting triggering relations point from left to right, the time dimension

in behaviour models matches the natural reading direction in Western cul-

tures. An example is the process model of Fig. 6.7.

 H andle Claim

Register PayValuateAccept
Damage

occurred

Fig. 6.7. Time dependence from left to right.

Avoid crossing lines.

Avoiding crossing lines can increase the readability of a model. In case of

a crossing line, the user may have to spend extra time finding out in what
direction each of the lines continues.

Use of Symbols

The shapes of objects usually match the intrinsic properties of the objects

(e.g., the cylinder shape for a data store, an actor represented by a stick
figure, etc.). There is a tendency to use realistic, possibly three-di-

mensional symbols for concrete and tangible objects (e.g., cylinder, human

figure, factory symbol, graphics of computers) and to use simple, geomet-
ric shapes for abstract concepts (e.g., process, function, component, etc.).

Use similar shapes for similar concepts.

Similar concepts should be represented by similar shapes. In the Archi-

Mate language, for example, all behavioural concepts such as business
process, service, and function, have rounded corners, whereas the struc-

tural concepts such as actor, component, and object have sharp corners.

Use line width to stress important relations.

In order to differentiate several types of relationships (for instance, flow of
goods, flow of money, and flow of information), different line styles and

arrows are used in the ArchiMate language. To differentiate relations of

the same type, line widths (e.g., thicker lines) can be used to stress the

most important ones, e.g., the main flow of information. This is used in
Fig. 6.8 to emphasise the information flow associated with the Handle

Claim business process.

144 Guidelines for Modelling

Insurer

Maintaining

Intermediary

Relations

Contracting

Financial

Handling

Claims

Handling

Claims

Insurance

policies

Customer information

Money

Maintaining

Customer

Relations

Asset

Management

Claims

Insurance

information

Insurance

premiums

Claim

payments

Insurance

policies

Claims

Money

Claim

information

Customer

Customer’s

Bank

Fig. 6.8. Line width used to emphasise information flow.

Use of Colour

Colour is a very strong visual signal. It is a visual attribute that is strongly

influenced by ‘prior knowledge’, like cultural values, fashion colours, or

company colours. Additional meanings can be easily (temporarily) at-

tached to a certain colour. Using a distinct colour for an object with a par-
ticular attribute can program the meaning of that colour for the rest of the

models describing a particular architecture. It is important to keep in mind

that colours can enlarge the appeal of the diagram, but can also lead to
contrary effects by abusive usage of them (such as confusion, distraction,

eye fatigue, difficulties in following the diagram).

Use colour for emphasis.

There is a perceptual order to colour that follows the spectrum of red, yel-
low, green, and blue. When viewing these colours, red tends to focus in the

foreground, yellow and green focus in the middle, and blue focuses in the

background. Consequently, red is usually used to emphasise a feature,
while blue is used for backgrounds.

Use colour for similarity.

Readability and Usability of Models 145

One way of indicating that certain elements have something in common is

to use the same colour. For instance, processes performed by the same ac-

tors can be given the same colour as the representation of the actor. Differ-
ent objects or concepts are usually represented by different colours. For

example, in many of the examples throughout the book, colour is used to

distinguish between business, application, and technology layer concepts.

Use colour to convey emotions.

There is a language to colour, based on the culture, education, and experi-

ence of people. Colours can be very symbolic. This fact should be kept in

mind when designing graphic representations of models. Some obvious
examples of this are: the colour red implies importance or danger; yellow

refers to caution; in mapping, green often represents vegetation. Colour

also has physical and emotional effects on the viewer. For example, red
may be perceived as exciting, green as restful, and blue as cheerful.

Limit the number of colours.

For esthetic reasons, too gaudy visualisations should be avoided, since this

will annoy the users of the model. Another reason for this constraint is that
too many different colours in a graphic hinder the viewer from developing

an effective mental model of the meaningful relationships between objects

and their colours.

Use of Text

Most modelling languages combine the power of text and graphics. Text

can be very strong in suggesting the proper interpretations and associations

and in stimulating thinking. The guidelines on the use of text try to stimu-

late you to be diligent in adding proper titles, subscripts, and annotations.
They do matter. Text is important to speed up the creation of the proper

mental model and to create a good starting point for a line of reasoning.

Use domain-specific terminology.

Using the terminology of the stakeholders facilitates communication with
them and helps to make a recognisable model (Biemans et al. 2001).

Use naming conventions.

Naming conventions can be used for indicating the kind of element, such
as verbs for actions and nouns for resources. Use short names (if possible

146 Guidelines for Modelling

consisting of one word) that are clear and unique. These will allow quick

identification of an object throughout the whole architecture.

In the ArchiMate example models throughout the book, we use nouns
for structural elements such as actors, roles, and components (e.g., ‘in-

surer’ and ‘policy administration’), first-person-singular verbs for business

processes (e.g., ‘handle claim’), and gerunds for functions (e.g., ‘contract-
ing’).

6.5 Summary

As described in this chapter, modelling is a goal-driven process in which
an enterprise architect, in cooperation with the stakeholders, creates and

structures a model via one or more viewpoints. As described in Chap. 4,

enterprise architecture models are created for many reasons: they may for

instance form a basis for design, for deciding, or for informing stake-
holders. Depending on the purpose and the stakeholders, an enterprise ar-

chitect can choose from a wide range of tools and techniques to create an

appropriate model. In this chapter the stages in a modelling process have
been described, as well as important principles influencing the modelling

process. These principles concern the choice of modelling concepts, the

use of abstraction, the structuring of models, as well as the visual represen-

tation of models. We have formulated concrete guidelines to describe good
practices and illustrate principles, with the intention of helping an enter-

prise architect to create models that suit their purpose and cover the con-

cerns of the various stakeholders.

7 Viewpoints and Visualisation

Establishing and maintaining a coherent enterprise architecture is clearly a
complex task, because it involves many different people with differing

backgrounds using various notations. In order to get to grips with this com-

plexity, researchers have initially focused on the definition of architectural
frameworks for classifying and positioning the various architecture de-

scriptions with respect to each other. A problem with looking at enterprise

architecture through the lens of an architectural framework is that it cate-

gorises and divides architecture descriptions rather than providing insight
into their coherence.

To integrate the diverse architecture descriptions, we advocate an ap-

proach in which architects and other stakeholders can define their own
views of the enterprise architecture. In this approach views are specified by

viewpoints. Viewpoints define abstractions on the set of models repre-

senting the enterprise architecture, each aimed at a particular type of stake-

holder and addressing a particular set of concerns. Viewpoints can be used
both to view certain aspects in isolation, and for relating two or more as-

pects.

This chapter focuses on the use of views of enterprise architectures, both
to create and manipulate architectural models and to give others insight

into the architectures being describe. We describe the use of viewpoints in

communication, and the distinction between an architecture model, a view
of that model, and its visualisation and manipulation. We give guidelines

for the selection and use of viewpoints, and we outline a number of view-

points on the ArchiMate language that can be used by architects involved

in the creation or change of enterprise architecture models.

7.1 Architecture Viewpoints

In this section we discuss the notion of views and viewpoints as basic tools

in communicating about architectures. In the context of enterprise architec-
tures, a viewpoint is typically used for activities like design, analysis, ob-

taining commitment, formal decision making, etc. As we argued in Chap.

4, we regard all of these activities to be communicative in nature.

148 Viewpoints and Visualisation

As defined in Sect. 3.2.4, a viewpoint essentially prescribes the con-

cepts, models, analysis techniques, and visualisations that are to be used in

the construction of different views of an architecture description. A view is
typically geared towards a set of stakeholders and their concerns. Simply

put, a view is what you see, and a viewpoint describes from where you are

looking.
In discussing the notion of viewpoint, we will first provide a brief over-

view of the origin of viewpoints. This is followed by a more precise defi-

nition of viewpoints, and the concept of viewpoint frameworks.

7.1.1 Origin of Viewpoints

The concept of viewpoint is not new. For example, in the mid 1980s, Mul-

tiview (Wood-Harper et al. 1985) already introduced the notion of views.

In fact, Multiview identified five viewpoints for the development of (com-
puterised) information systems: Human Activity System, Information

Modelling, Socio-Technical System, Human–Computer Interface, and the

Technical System. During the same period in which Multiview was devel-

oped, the so-called CRIS Task Group of IFIP Working Group 8.1 de-
veloped similar notions, where stakeholder views were reconciled via ap-

propriate ‘representations’. Special attention was paid to disagreement

about which aspect (or perspective) was to dominate the system design
(namely, ‘process’, ‘data’, or ‘behaviour’). As a precursor to the notion of

concern, the CRIS Task Group identified several human roles involved in

information system development, such as executive responsible, develop-
ment coordinator, business analyst, business designer (Olle et al. 1988).

The use of viewpoints is not limited to the information systems commu-

nity, it was also introduced by the software engineering community. In the

1990s, a substantial number of software engineering researchers worked
on what was phrased as ‘the multiple perspectives problem’ (Finkelstein et

al. 1992, Kotonya and Sommerville 1992, Nuseibeh 1994, Reeves et al.

1995). By this term, the authors referred to the problem of how to organise
and guide (software) development in a setting with many actors, using di-

verse representation schemes, having diverse domain knowledge, and us-

ing different development strategies. A general framework has been devel-

oped in order to address the diverse issues related to this problem
(Finkelstein et al. 1992, Kotonya and Sommerville 1992, Nuseibeh 1994).

In this framework, a viewpoint combines the notion of actor, role, or agent

in the development process with the idea of a perspective or view which an
actor maintains. A viewpoint is more than a partial specification; in addi-

tion, it contains partial knowledge of how further to develop that partial

Architecture Viewpoints 149

specification. These early ideas on viewpoint-oriented software engineer-

ing have found their way into the IEEE 1471 standard for architecture de-

scription (IEEE Computer Society 2000) on which we have based our
definitions below.

7.1.2 Architecture Viewpoints

In the context of architecture, viewpoints provide a means to focus on par-

ticular aspects of an architecture description. These aspects are determined
by the concerns of the stakeholders with whom communication takes

place. What should and should not be visible from a specific viewpoint is

therefore entirely dependent on argumentation with respect to a stake-
holder’s concerns. Viewpoints are designed for the purpose of serving as a

means of communication in a conversation about certain aspects of an ar-

chitecture. Though viewpoints can be used in strictly uni-directional, in-
formative conversations, they can in general also be used in bi-directional

classes of conversations: the architect informs stakeholders, and stake-

holders give their feedback (critique or consent) on the presented aspects.

What is and what is not shown in a view depends on the scope of the
viewpoint and on what is relevant to the concerns of the stakeholders. Ide-

ally, these are the same, i.e., the viewpoint is designed with the specific

concerns of a stakeholder in mind. Relevance to a stakeholder’s concern,
therefore, is the selection criterion that is used to determine which objects

and relations are to appear in a view.

Below we list some examples of stakeholders and their concerns, which
could typically serve as the basis for the definition/selection of viewpoints:

− Upper-level management: How can we ensure our policies are followed

in the development and operation of processes and systems? What is the

impact of decisions (on personnel, finance, ICT, etc.)? Which improve-

ments can a new system bring to a pre-existing situation in relation to
the costs of acquiring that system?

− Middle-level management: What is the current situation with regards to

the computerised support of a business process?

− End user: What is the potential impact of a new system on the activities

of a prospective user?

− Architect: What are the consequences for the maintainability of a system

with respect to corrective, preventive, and adaptive maintenance?

− Operational manager: What new technologies do we need to prepare

for? Is there a need to adapt maintenance processes? What is the impact

of changes to existing applications? How secure are the systems?

150 Viewpoints and Visualisation

− Project manager (of system development project): What are the relevant

domains and their relations? What is the dependence of business proc-

esses on the applications to be built? What is their expected perform-

ance?

− System developer: What are the modifications with respect to the cur-

rent situation that need to be performed?

− System administrators: What is the potential impact of a new system on

the work of the system administrators that are to maintain the new sys-

tem?

In line with the IEEE 1471 standard, and based on the detailed definition

given in Proper (2004) we define a viewpoint as follows:

Viewpoint: a specification of the conventions for constructing and

using views.

This should also involve the various ‘ways of …’ that we outlined in Sect.

3.2.5, but in this chapter we will focus on the selection of the content of

views, the visual representation of this content, and the typical use of these
viewpoints, i.e., on the ways of modelling, communicating, and using. The

‘way of supporting’, i.e., tool support for views, will be addressed in Chap.

10, and the ‘way of working’ has already been addressed in Chap. 6.

7.1.3 Viewpoint Frameworks

In the context of architecture descriptions, a score of viewpoint frame-

works exists, leaving designers and architects with the burden of selecting

the viewpoints to be used in a specific situation. Some of these frameworks

of viewpoints are: the Zachman framework (Zachman 1987), Kruchten’s
4+1 view model (Kruchten 1995), RM-ODP (ITU 1996), and TOGAF

(The Open Group 2002). These frameworks have usually been constructed

by their authors in an attempt to cover all relevant aspects/concerns of the
architecture of some class of systems. In practice, numerous large organi-

sations have defined their own frameworks of viewpoints by which they

describe their architectures. We shall discuss two of these framework in
more detail below.

The ‘4+1’ View Model

Kruchten (1995) introduced a framework of viewpoints (a view model)

comprising five viewpoints. The use of multiple viewpoints is motivated
by the observation that it ‘allows to address separately the concerns of the

Architecture Viewpoints 151

various stakeholders of the architecture: end-user, developers, systems en-

gineers, project managers, etc., and to handle separately the functional and

non-functional requirements’.
The goals, stakeholders, concerns, and meta-model of the 4+1 frame-

work can be presented, in brief, as in Table 7.1. Note that in Kruchten

(2000), the viewpoints have been renamed; physical viewpoint � deploy-
ment viewpoint, development viewpoint � implementation viewpoint, and

scenario viewpoint � use-case viewpoint, better to match the terminology

of UML.

The framework proposes modelling concepts (the meta-model) for each
of the specific viewpoints. It does so, however, without explicitly discuss-

ing how these modelling concepts contribute to the goals of the specific

viewpoints. One might, for example, wonder whether object classes, asso-
ciations, etc., are the right concepts for communication with end users

about the services they require from the system. The 4+1 framework is

based on experiences in practical settings by its author.

Table 7.1. Kruchten’s ‘4+1’ view model.

Viewpoint Logical Process Development Physical Scenarios

Goal

Capture the

services

which the

system

should pro-

vide

Capture

concurrency

and sychro-

nisation as-

pects of the

design

Describe static

organisation of

the software and

its development

Describe

mapping of

software onto

hardware, and

its distribu-

tion

Provide a

driver to dis-

cover key

elements in

design

Validation

and illustra-

tion

Stake-

holders

Architect

End users

Architect

System de-

signer

Integrator

Architect

Developer

Manager

Architect

System de-

signer

Architect

End users

Developer

Concerns Functional-

ity

Performance

Availability

Fault toler-

ance

...

Organisation

Reuse

Portability

...

Scalability

Performance

Availability

...

Understand-

ability

Meta-model

Object

classes

Associations

Inheritance

...

Event

Message

Broadcast

...

Module

Subsystem

Layer

...

Processor

Device

Bandwidth

...

Objects

Events

Steps

...

RM-ODP

The Reference Model for Open Distributed Processing (RM-ODP) (ITU

1996) was produced in a joint effort by the international standard bodies

152 Viewpoints and Visualisation

ISO and ITU in order to develop a coordinating framework for the stan-

dardisation of open distributed processing. The resulting framework de-

fines five viewpoints: enterprise, information, computation, engineering
and technology. The modelling concepts used in each of these views are

based on the object-oriented paradigm.

The goals, concerns, and associated meta-models of the viewpoints
identified by the RM-ODP can be presented, in brief, as in Table 7.2.

Table 7.2. The RM-ODP viewpoints.

Viewpoint Enterprise Information Computational Engineering Technology

Goal Capture

purpose,

scope, and

policies of

the system

Capture se-

mantics of in-

formation and

processing

performed by

the system

Express distri-

bution of the

system in in-

teracting objects

Describe de-

sign of distri-

bution-ori-

ented aspects

of the system

Describe

choice of

technology

used in the

system

Concerns Organisa-

tional re-

quirements

and struc-

ture

Information

and process-

ing required

Distribution of

system

Functional de-

composition

Distribution

of the system,

and mecha-

nisms and

functions

needed

Hardware and

software

choices

Compliancy

to other views

Meta-model Objects

Communi-

ties

Permissions

Obligations

Contract

...

Object classes

Associations

Process

...

Objects

Interfaces

Interaction

Activities

...

Objects

Channels

Node

Capsule

Cluster

...

Not stated ex-

plicitly

RM-ODP provides a modelling language for each of the viewpoints
identified. It furthermore states: ‘Each language [for creating views/models

conforming to a viewpoint] has sufficient expressive power to specify an

ODP function, application or policy from the corresponding viewpoint.’

RM-ODP does not explicitly associate viewpoints to a specific class of
stakeholders. This is left implicit in the concerns which the viewpoints aim

to address.

7.2 Models, Views, and Visualisations

An important principle in our approach is the separation of the content and

the presentation or visualisation of a view. This separation is not explicitly

made in the IEEE standard, but it has important advantages. It facilitates
the use of different visualisation techniques on the same modelling con-

Models, Views, and Visualisations 153

cepts, and vice versa. Operations on the visualisation of a view, e.g.,

changing its layout, need not change its content.

The view content, referred to as the ‘view’ in the remainder of this chap-
ter, is a selection or derivation from a (symbolic) model of the architecture,

and is expressed in terms of the same modelling concepts. The presenta-

tion or notation of this view, referred to as ‘visualisation’ in the remainder,
can take many forms, from standard diagrams to tables, cartoons, or even

dynamic visualisations like movies. Editing operations on this visualisation

can lead to updates of the view and of the underlying model. The creation

and update of both the view and the visualisation are governed by a view-
point. This viewpoint is jointly defined and/or selected in an iterative proc-

ess by architect and stakeholder together. This is illustrated in Fig. 7.1.

select

derive

visualise

update update

Viewpoint

View Visualisation Model

Architect Stakeholder

Fig. 7.1. Separation of concerns: model, view, visualisation, and viewpoint.

The separation between view and visualisation is based on the notion of

‘meaning’. In Chap. 3 we introduced the concept of the signature of an ar-

chitecture as its alphabet: that is, the set of symbols used to describe the
concepts of the architecture and the relations among these concepts. This

idea can also be used to clarify the distinction between view and its visu-

alisation. A further discussion of these formal foundations can be found in
Chap. 8.

A view stripped from its visual properties can be formalised just like

any other model, e.g., by defining its signature, as outlined in Chap. 3. By

formalising its relation with an underlying model, a view’s quality and
consistency can be greatly enhanced and new opportunities for its use may

arise, e.g., in changing the underlying models by interacting with such a

view.

154 Viewpoints and Visualisation

7.2.1 Example: Process Illustrations

To illustrate the difference between a view and its visualisation, we intro-

duce the process illustration viewpoint. This viewpoint illustrates a pro-
cess model in an informal way for employees and managers. A process il-

lustration is derived from a model of the architecture using a set of transla-

tion and abstraction rules. As process illustrations are meant for

communicating the coherence between business processes, they typically
abstract from details regarding the applications and technology involved.

Moreover, process illustrations do not apply abstract concepts and nota-

tions, but rather use recognisable terms and intuitive notations.
A process illustration of the Car Tax Collection process is depicted in

Fig. 7.2. The figure shows the various subprocesses involved and the in-

formation flows between them. The figure is derived from an ArchiMate
model via a series of translation and abstraction rules, for instance to re-

place abstract shapes with meaningful symbols, abstract from complex re-

lations, and visually group all objects and relations that belong to or hap-

pen within a certain actor.

BPM

declaration point

Customs unit
BPM

17

ex2

Collection

RDW

Administration

B/CICT

Desk

Handling

Archive

$$
Vault

Catalogue

value

Declaration

file

BPM

workstation

(Customs

unit)

BPM

server

(BCICT)

RIN

server

(Collection)

BPM

17

ex3

BPM
17

ex1

invoice

payment

decaration

payment

payment

check

Fig. 7.2. Process illustration of the Car Tax Collection process.

Models, Views, and Visualisations 155

$$$$

Fig. 7.3. Translation rules.

In Fig. 7.3 you can see a number of presentation rules that can be ap-
plied in the ‘model-to-illustration’ derivation. The basic idea behind these

rules is to find suitable and intuitive graphic symbols that will replace Ar-

chiMate shapes. These rules apply to ArchiMate concepts for which there

is an immediate correspondent in the process illustration notation (i.e., ac-
tor, role, device, service, business object, etc.).

Of course, many other rules can be added here. For instance, rules refer-

ring to a specific layout of the final drawing or to the more extensive usage
of 3D graphic symbols can increase the readability and usability of the fi-

nal drawing.

7.2.2 Example: Landscape Maps

A more complex example to illustrate the differences between a model, a
view, and its visualisation, is the landscape map viewpoint. Landscape

maps, as defined in van der Sanden and Sturm (1997), are a technique for

visualising enterprise architectures. They present architectural elements in
the form of an easy-to-understand 2D ‘map’. A landscape map view of ar-

chitectures provides non-technical stakeholders, such as managers, with a

high-level overview, without burdening them with the technicalities of ar-
chitectural drawings.

156 Viewpoints and Visualisation

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Fig. 7.4. Landscape map of ArchiSurance.

Many systems used by many processes realising various products and

services comprise too much detail to display in a single figure. This is a

typical example of where landscape maps can help. In Fig. 7.4, a landscape
map is depicted that shows which information systems support the opera-

tions of our fictitious insurance company ArchiSurance. The vertical axis

represents the company’s business functions; the horizontal axis shows its
insurance products. An application rectangle covering one or more cells

means that this particular function/product pair is supported by the appli-

cation, e.g., contracting of a legal aid insurance is supported by the legal
aid back-office system. The visualisation chosen makes it immediately ob-

vious to the viewer that there is (possibly unwanted) overlap between ap-

plications, as is the case in the Car insurance application and the Legal Aid

CRM system. Clearly, landscape maps are a richer representation than
cross-reference tables, which cover only two dimensions. In order to ob-

tain the same expressive power of a landscape map two cross-reference ta-

bles would be necessary; but even then, you would get a presentation that
is not as insightful and informative as a landscape map.

The dimensions of the landscape maps can be freely chosen from the ar-

chitecture that is being modelled. In practice, dimensions are often chosen
from different architectural domains, for instance business functions,

products and applications, etc. In most cases, the vertical axis represents

Visualisation and Interaction 157

behaviour such as business processes or functions; the horizontal axis

represents ‘cases’ for which those functions or processes must be executed.

These ‘cases’ can be different products, services, market segments, or sce-
narios. The third dimension represented by the cells of the matrix is used

for assigning resources like information systems, infrastructure, or human

resources.
The visualisation of architecture models as landscape maps is based on

architecture relations. The dimensions that are used in the landscape maps

determine which relations are used. For instance, the landscape map in Fig.

7.4 relates business functions (Contracting, Claim Handling, etc.) to prod-
ucts (Home insurance, Travel insurance, etc.) to applications (Web portal,

Car insurance application, etc.). The relation between business functions,

products, and applications is not directly supported by relations in the un-
derlying model. Rather, this needs to be inferred indirectly: a product

comprises a number of business services, which are realised by business

processes and functions, which use (the application services of) application
components. For this inference, the formalisation of the underlying sym-

bolic models and the rules for the composition of relations described in

Chaps. 3 and 4 are indispensable.
For landscape maps to be of practical use, the visualisation must be in-

tuitive and easy to understand. To a large extent, the choice of the axes and
the ordering of the rows and columns determine the layout of a landscape
map. If adjacent cells in the plane have the same value assigned, they can
be merged to form a single shape. If there are no other criteria for ordering
the axes such as time or priority, changes to the ordering can be used to
optimise the layout of shapes in the plane, and also to limit their number.
Various layout optimisation algorithms can be employed, and user ma-
nipulation of, for example, the order of rows and columns may also help in
creating a pleasing visualisation.

Summarising, in developing the landscape map viewpoint, it has been
fruitful to distinguish the operation on the model from the visualisation of
the view, because they are completely different concerns. The same holds
for the other viewpoints we have defined. To separate these concerns,
views have to be distinguished from their visualisation.

7.3 Visualisation and Interaction

The distinction we make between a model and its visualisation naturally

leads to the concept of interactive visualisation; that is, visualisation which

can change the model due to interaction with a stakeholder. Interaction has
traditionally been considered as something completely outside the model

158 Viewpoints and Visualisation

and the view. Interaction is at least partly a visualisation issue: for exam-

ple, when a user draws an object on the canvas of some tool. However, it

can also partly be defined as part of the model and view, since the object
the user draws may be put in the underlying model or view as well.

These two considerations have led to a new visualisation and interaction

model for enterprise architectures in ArchiMate. Its goal is that interaction
is separated from updating the model, or from its visualisation.

7.3.1 Actions in Views

The effect of a user interacting with the visualisation can be an update of

the view. But where will this be defined? Clearly, the visualisation itself is
‘dumb’ and does not know about the semantics of the view. Hence, rules

for changing the view cannot be tied to the visualisation and must be de-

fined in the view itself. This is why we introduce the notion of actions in

views. Consider for example a landscape map view, and a user who inter-

acts with this view by moving an application to another business function.

Does the relation between the interaction with the landscape map and the

update of the model mean something? Obviously the relation between the
move in the landscape map leads to an update of the underlying model or

view, and thus means something.

In Sect. 6.2.3 we have identified a number of basic modelling actions,
such as introducing, refining, abandoning, abstracting, and translating a

concept in a model. These actions operate on the architecture model or

view, not on its visualisation. However, most changes to a model will be
conducted by a user who changes a visualisation of that model. Hence, we

need to define the ways in which a user can manipulate these visualisations

and the effects on the underlying model in terms of these basic modelling

actions. We can then relate these actions to the manipulations of the visu-
alisation by making the actions part of the view being visualised.

Thus, a clear separation of model and visualisation leads to a separation

of concerns in tool building. An extremely generic visualisation engine can
be constructed that does not need to know about the semantics of the mod-

els it displays. If we define the possible actions together with the views, a

generic editor can be configured by this set of actions.

The actions in views should be defined in terms of the effects they have
on elements of the underlying model. For example, consider a view of a

business process model, and an action that merges two processes into a

single process. Issues that are relevant for the action of merging processes
are the effects of the merger: for example, the removal of processes, addi-

Visualisation and Interaction 159

tion of a new process, transferring some relations from an old, removed

process to a new process.

For each viewpoint, we define a set of actions. For example, for the
landscape map viewpoint we define the move of an application to another

cell, we define changing the columns and rows of the matrix, and we de-

fine the addition and deletion of applications. Moreover, we must deter-
mine for each action which parameters it needs as input, and define the

consequences of executing the action.
When actions for each view have been defined, we can go one step fur-

ther and define the relation between actions. One important relation is that
one action may consist of a set of simpler actions. For example, consider
an architect or stakeholder that wishes to change an existing landscape
map. First the effects of this change on the underlying model need to be
assessed. Some changes may be purely ‘cosmetic’ in nature, e.g., changing
the colour of an object. Other changes need to be propagated to the under-
lying model by invoking one of the basic modelling actions of Sect. 6.2.3,
e.g., if an object is added or deleted.

Mapping a seemingly simple change to the map onto the necessary
modifications of the model may become quite complicated. Since a land-

scape map abstracts from many aspects of the underlying model, such a

mapping might be ambiguous: many different modifications to the model
might correspond to the same change of the landscape map. Human inter-

vention is required to solve this, but a landscape map tool might suggest

where the impact of the change is located.
In the example of Fig. 7.4, you may for instance want to remove the

seemingly redundant Legal aid CRM system by invoking a ‘remove over-

lap’ operation on this object. This operation influences both the visualisa-
tion and the architectural model. The effects of the operation on the under-

lying model are shown in Fig. 7.5. First, you select the object to be

removed, in this case the Legal Aid CRM system. The envisaged tool col-
ours this object and maps it back onto the underlying object in the archi-

tecture. Next, the relations connecting this object to its environment are

computed, possibly using the impact-of-change analysis techniques de-
scribed in Chap. 8 (the second part of Fig. 7.5). Here, this concerns the re-

lations of Legal Aid CRM to the Web portal and the Legal Aid back-office

system. These relations will have to be connected to one or more objects

that replace the objects that are to be removed. Since we have chosen a
‘remove overlap’ operation, the landscape tool computes with which other

objects Legal Aid CRM overlaps, in this case the CRM system. The rela-
tions formerly connecting Legal Aid CRM are then moved to the other

CRM system, unless these already exist (e.g., the relation with the Web

portal).

160 Viewpoints and Visualisation

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

ArchiSurance

Home

&

Away

Car

Legal

Aid

Customer Relations

& Sales

H ome & Aw ay

Pol icy

administra tion

H ome & Aw ay

Financia l

appl ication

Car

Insurance

appl ication

Legal Aid

backoffice

system

Web

porta l

Call center

application

CRM system
Legal Aid

CRM

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations
& Sales

Home & Away
Policy

admin istration
Home & Away

Financial
application

Car
Insurance

application

Legal Aid
backoffice

system

Web

portal

Call center

application

CRM system
Legal Aid

CRM

Fig. 7.5. Editing a landscape map.

Creating, Selecting, and Using Viewpoints 161

Naturally, this scenario presents an ideal situation with minimal user in-

tervention. In reality, a tool cannot always decide how a proposed change
is to be mapped back onto the model, and may only present the user with a

number of options. For example, if the functionality of the Legal Aid CRM

system overlaps with more than one other system, remapping its relations
requires knowledge about the correspondence between these relations and

the functions realised by these other systems.

Implementing a tool that realises this ‘actions in views’ concept is not a
trivial task. In Chap. 10, we will describe the design of a prototype tool

that provides a proof of concept of these ideas.

7.4 Creating, Selecting, and Using Viewpoints

It is interesting to note that both of the discussed frameworks of view-

points (Sect. 7.1.3) do not provide an explicit motivation for their choice

regarding the modelling concepts used in specific viewpoints. When using

one of the two frameworks, architects will not find it difficult to select a
viewpoint for the modelling task at hand. However, this ‘ease of choice’ is

more a result of the limitation of the selections of options available (one is

limited to the number of viewpoints provided by the framework) than the
result of a well-motivated choice about the viewpoint’s utility towards the

tasks at hand.

One should realise that a well-integrated set of viewpoints (such as the
ArchiMate viewpoints) brings more (utility!) to a development project than

the sum of its parts! Among other things, it allows views to be more easily

related and integrated into a consistent whole. However, defining such an

integrated viewpoint framework is an expensive undertaking. This means
that even though a pre-existing (off-the-shelf) viewpoint framework may

not be the ideal answer to an architect’s specific communication needs, the

alternative strategy of defining a tailor-made viewpoint framework for
each development project is likely to be too costly. Hence our attention to

defining ‘ad hoc’ viewpoints relative to a predefined modelling language

(i.e., meta-model) as a compromise between fixed viewpoints and free

viewpoints.

7.4.1 Classification of Viewpoints

As we can see from the list of stakeholders in Sect. 7.1.2, an architect is

confronted with many different types of stakeholders and concerns. To
help the architect in selecting the right viewpoints for the task at hand, we

162 Viewpoints and Visualisation

introduce a framework for the definition and classification of viewpoints

and views. The framework is based on two dimensions, purpose and con-

tent. The following three types of architecture support define the purpose
dimension of architecture views (Steen et al. 2004):

− Designing: Design viewpoints support architects and designers in the

design process from initial sketch to detailed design. Typically, design

viewpoints consist of diagrams, like those used in UML.

− Deciding: Decision support views assist managers in the process of de-

cision making by offering an insight into cross-domain architecture rela-

tions, typically through projections and intersections of underlying

models, but also by means of analytical techniques. Typical examples
are cross-reference tables, landscape maps, lists, and reports.

− Informing: These viewpoints help to inform any stakeholder about the

enterprise architecture, in order to achieve understanding, obtain com-

mitment, and convince adversaries. Typical examples are illustrations,

animations, cartoons, flyers, etc.

The goal of this classification is to assist architects and others to find suit-

able viewpoints given their task at hand, i.e., the purpose that a view must

serve and the content it should display. With the help of this framework, it
is easier to find typical viewpoints that might be useful in a given situation.

This implies that we do not provide an orthogonal categorisation of each

viewpoint into one of three classes; these categories are not exclusive in

the sense that a viewpoint in one category cannot be applied to achieve an-
other type of support. For instance, some decision support viewpoints may

be used to communicate to any other stakeholders as well.

B
u
s
in
e
s
s

A
p
p
lic
a
tio

n
T
e
c
h
n
o
lo
g
y

Passive structure Behaviour Active structure

business objects
business services

and processes actors and roles

applications and

components

application services

and functions
data objects

artifacts
infrastructure services

and system software

devices and

networks

Fig. 7.6. Elements of an enterprise architecture.

Creating, Selecting, and Using Viewpoints 163

For characterising the content of a view we define the following abstrac-

tion levels:

− Details: Views of the detailed level typically consider one layer and one

aspect from the framework that was introduced in Chap. 5 (Fig. 7.6).
Typical stakeholders are a software engineer responsible for the design

and implementation of a software component or a process owner re-

sponsible for effective and efficient process execution. Examples of
views are a BPMN process diagram and a UML class diagram.

− Coherence: At the coherence abstraction level, multiple layers or multi-

ple aspects are spanned. Extending the view to more than one layer or

aspect enables the stakeholder to focus on architecture relations like
process–use–system (multiple layer) or application–uses–object (multi-

ple aspect). Typical stakeholders are operational managers responsible

for a collection of IT services or business processes.

− Overview: The overview abstraction level addresses both multiple lay-

ers and multiple aspects. Typically such overviews are addressed to en-
terprise architects and decision makers such as CEOs and CIOs.

In Fig. 7.7, the dimensions of purpose and abstraction level are visualised

in a single picture, together with examples of stakeholders. Table 7.3 and
Table 7.4 summarise the different purposes and abstraction levels.

architect,

software

developer,

business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,

CIO, CEO

customer,

employee,

others

architect,

software

developer,

business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,

CIO, CEO

customer,

employee,

others

Fig. 7.7. Classification of enterprise architecture viewpoints.

164 Viewpoints and Visualisation

Table 7.3. Viewpoint purpose.

 Typical stakeholders Purpose Examples

Designing Architect, software

developer, business

process designer

Navigate, design,

support design de-

cisions, compare

alternatives

UML diagram,

BPMN diagram,

flowchart, ER dia-

gram

Deciding Manager, CIO, CEO Decision making Cross-reference ta-

ble, landscape map,

list, report

Informing Employee, customer,

others

Explain, convince,

obtain commitment

Animation, cartoon,

process illustration,

chart

Table 7.4. Viewpoint abstraction levels.

 Typical stake-

holders

Purpose Examples

Details Software engi-

neer, process

owner

Design, manage UML class diagram,

Testbed process diagram

Coherence Operational man-

agers

Analyse dependen-

cies, impact of-
change

Views expressing rela-

tions like ‘use’, ‘realise’,
and ‘assign’

Overview Enterprise archi-

tect, CIO, CEO

Change manage-

ment

Landscape map

The landscape map viewpoint described in Sect. 7.2.1 is a typical exam-

ple of a decision support view, which give a high-level overview and can,

for example, be used to identify redundancies or gaps in the application
landscape of an enterprise.

The process illustration viewpoint described in Sect. 7.2.1 is an example

of a viewpoint intended for ‘informing’ others. It depicts workflows in a
cartoon-like fashion, easily readable for employees and managers. Process

illustrations can be on the detailed, coherence, or overview abstraction

level.

To assist the architect in designing an enterprise architecture, we present
a set of basic design viewpoints in the next sections. These viewpoints are

all diagrams for designing architectures. Some viewpoints are multiple-

aspect and multiple-layer overviews at the ‘coherence’ level of abstraction,
while others are at the ‘details’ level.

Creating, Selecting, and Using Viewpoints 165

7.4.2 Guidelines for Using Viewpoints

To help you in selecting and using viewpoints for tasks at hand, we present

a number of guidelines, based on our own experience and interviews with
architects from practice.

In general, the use of an architectural viewpoint will pass through a

number of phases. These phases roughly are:

1. Scoping: Select one or more appropriate viewpoints, select the (sub-
)domain that needs to be represented or modelled, and determine the

constraints that apply to the domain being modelled.

2. Creation of views: Create or select the actual content of the viewpoint,
i.e., create or select a view conforming to the viewpoint used. This can

pertain to the selection of a part of the larger (pre-existing) architecture

model, or the creation or refinement of a part of the architecture model
(in terms of a view).

3. Validation: Validate the resulting view. Do the stakeholders agree that

the view is a correct representation of the actual or intended situation?

4. Obtaining commitment: If agreement has been reached among the key
stakeholders involved, the next step will be to create commitment for the

results. In other words, do the stakeholders commit themselves to the

(potential) impact of what is described by the view?
5. Informing: Inform other stakeholders of the results. These stakeholders

will be those members of the development community, whose explicit

commitment has, in a conscious decision, been considered not to be cru-
cial.

Note that these phases will not necessarily be executed in a linear order.

Practical circumstances usually dictate a more evolutionary approach. The

viewpoints to be used for architectural communication will have to support
the activities of each of the phases. The guidelines resulting from the inter-

views are divided over them. They are discussed in the next sections.

7.4.3 Scoping

The importance of focusing on the concerns of stakeholders, and the extent
to which a specific view(point) addresses these concerns, was confirmed

by the outcomes of the interviews. When you communicate with business

managers, you only need those views or models that enable a discussion of
factors deserving special attention. Typically these are factors that have a

high impact if they fail and also have a high risk of indeed failing. For

communication with the actual software developers, on the other hand,
more detailed models are crucial.

166 Viewpoints and Visualisation

The selection of viewpoints should be done consciously and based on

rational considerations. Furthermore, architects state that this decision, and

its rationalisation, must be readily available. It is quite possible that a
stakeholder (usually a technology-oriented one) will ask for more detail in

a model than you can give, or want to give, in that particular phase of the

project. An architect should be prepared to clarify better the goals of the
particular model and phase, and why the requested details are not yet rele-

vant (or even harmful).

Determining the constraints that should guide the ensuing creation phase

is also considered to be important. Numerous IT projects suffer from the
problem that designers have too much ‘design freedom’ when producing a

model of a desired future system. This increases the risk of ending up with

lengthy design processes. Limiting design freedom by means of ar-
chitecture principles, a higher-level architecture, or any other means, re-

duces this risk considerably.

7.4.4 Creation of Views

During the creation of a view, in particular when it involves actual model-
ling, you should try to put a limit on the number of participants in a con-

versation. Graphical models may or may not be used in communication

with stakeholders, but most actual modelling is done by individuals (or
two people at most). Genuine group modelling sessions are very rare.

During the early stages of system design, it is often considered bad to

‘think’ in terms of ‘solutions’. However, when detailed modelling takes
place in a cooperative setting, give informants some room to think in terms

of ‘solutions’ even if pure requirements thinking (what, not how) does not

officially allow for this. Most people just think better in terms of concrete

solutions; it is a vital part of their creativity. Just be sure that requirements
thinking is returned to in due course. In general, when you discuss models

with stakeholders and informants, in particular when you try to establish a

common understanding, you should discuss different scenarios and alterna-
tives to the model being considered. Doing so leads to an exploration of

the meaning and impact of the model taking shape, and also leads to im-

proved mutual understanding.

The graphical notation that is part of a viewpoint should be approached
flexibly when it comes to communicating with non-technical stakeholders.

If people are not used to or prepared to deal with abstract graphical mod-

els, do not use them. Use other forms of visualisation, text, or tables. Icon-
ised diagrams work particularly well. However, be prepared to point out

Creating, Selecting, and Using Viewpoints 167

the relation between the alternative visualisation and your abstract models

if asked to.

Even if graphical models play a big role in architecture, text is the chief
form in which (written) communication takes place. Two main ways in

which this occurs are:

− Graphical (partial!) models that are used to support textual descriptions

(‘illustration by diagram’).

− Text explaining and elaborating on a graphical model (‘textual model-

ling’).

In fact, text is often better than a graphical model for conveying large

amounts of detail.
Language studies have indeed shown how the specific form of a lan-

guage does have an impact on what is expressed by means of the language

(Cruse 2000). In the case of modelling languages, the modelling concepts

offered by the language will, in general, influence the level of detail or ab-
straction that the resulting models will exhibit.

Finally, during a modelling session, several things may come to the fore

that will influence the further process. External events may occur that are a
threat to the process as a whole. Be prepared to stop modelling if executive

commitment is withdrawn. It may be frustrating, but from a business per-

spective it may also be crucial. It is simply part of a flexible project setup.

If the informants turn out to be less informed than expected, it is better to
stop than to try and ‘make the best of it’ and produce an ill-conceived

model.

In the field of agile development (Martin 2002, Rueping 2003, Ambler
2002), a refreshing perspective can be found on such considerations.

7.4.5 Validation

In validation of an architecture with stakeholders, a clear difference should

be made between validation of content (qualitative validation, by model-
lers and experts) and validation in terms of commitment (by executives).

Both are crucial, but very different. Obtaining (and validating) commit-

ment is discussed in the next subsection.
Whether good mutual communication and understanding about a model

is being reached is often a matter of intuition. If the people involved have a

mutual feeling that ‘their thoughts are well in sync’, then dare to trust that

feeling. However, if the opposite is the case, be prepared to invest in sub-
stantial discussion of concrete examples, or face the dire consequences of

poor validation. If the required ‘level of agreement’ between participants is

168 Viewpoints and Visualisation

high, an atmosphere of mutual trust and cooperation between these partici-

pants is crucial.

Validation is an activity that should be conducted in limited groups.
‘Feedback rounds’ involving a larger number of people, by e-mail or

printed documentation, do not really work. If you want feedback that is

worth something, find key people and discuss the models/views, preferably
face to face. Make sure the ‘opinion leaders’ in an organisation agree to the

model.

Also, you should take care that the languages used to express a view do

not have a wrong connotation that may result in incorrect impressions
about the scope and status of models. A language like UML cannot be

used in a discussion with business people. Even though the language is

suitable to express the models, the notation has an implementation-
oriented connotation to this audience.

Furthermore, do not show a concrete view of the desired system too

early on in the development process. The concreteness of the diagram may
give the stakeholders a feeling that important decisions have already been

made.

With regards to the last observation, an interesting statement on this is-

sue can also be found in Weinberg (1988). He argues that when the design
of a system, or a model in general, is still in its early stages, and different

aspects are not yet clear and definite, the graphical notation used should

also reflect this. He suggests using squiggly lines rather than firm lines, so
as to communicate to the reader of a view that specific parts of the view

are still open to debate. We use this principle in the Introductory viewpoint

discussed in Sect. 7.5.1.

7.4.6 Obtaining Commitment

Obtaining commitment for a specific architectural design involves obtain-

ing commitment for the impact of this design on the future system and its

evolution, as well as the costs/resources needed to arrive at this future sys-
tem. This means that the message that one needs to get across to the stake-

holders involves:

− What are the major problems in the current situation?

− How bad are these problems (to the concerns and objectives of the

stakeholders)?

− How will this improve in the new situation? (Benefits!)

− At what costs will these improvements come?

Creating, Selecting, and Using Viewpoints 169

When discussing costs and benefits with stakeholders, make these costs

and benefits as SMART (Specific, Measurable, Attainable, Realisable, and

Time-bound) as possible. Make sure that the stakeholders agree, up front,
with the criteria that are used to express/determine costs and benefits. It is

their commitment that is needed. They will be the judge. Let them also de-

cide what they want to base their judgement on! Create shared responsibil-
ity towards the outcomes.

Selecting the stakeholders that should be involved when obtaining com-

mitment is also of key importance. Involving the wrong stakeholders, or

leaving out important ones, will have obvious repercussions. At the same
time, selecting a too large a group of stakeholders may bog down the proc-

ess. Too much communication may be a bad thing: it may create unnoticed

and uncontrolled discussion outside the main discussion, leading to twisted
conceptualisations and expectations.

Though ideally ‘everyone’ should be heard, this is generally a practical

impossibility. Therefore, choose your experts carefully. Aim for the opin-
ion leaders, and also accept that you cannot please everyone. Realise that

some people will not be perfectly satisfied, prepare for it, and deal with it.

People who actually make the decisions are usually those who are just

outside the group of people who really know what is going on. Make sure
that the former people are also involved and aware of what is happening.

Getting executive commitment may actually be dictated technologically.

If their business is highly technological, business people do not see tech-
nology as secondary, and will only commit to something if they are as-

sured that ‘their organisation will be able to run it’.

Sharing design decisions and their underlying considerations at a late
stage has a negative impact on the commitment of stakeholders. Start

building commitment early on in the process. This implies that the linear

ordering of the ‘viewpoint use phases’ as provided at the start of this sec-

tion should not be applied strictly.
Once agreement has been reached, you should document this explicitly.

Models are never accepted as sufficient statements to base agreements and

commitment on. Commitments and agreements also need to be spelled out
separately, in text.

7.4.7 Informing Stakeholders

Once commitment from the opinion leaders has been obtained, other

stakeholders may be informed about the future plans and their impact. In
doing so, it still makes sense to concentrate on cost/benefit considerations

when trying to ‘sell’ the new system. Below, we have gathered some ob-

170 Viewpoints and Visualisation

servations that apply to the informing phase. However, due to their general

communicative nature, some of these observations are also applicable to

the creation, validation, and commitment phases.
Do not impose presumed architectural terminology on true business

people. Use their terminology. Even a concept like ‘service’ is suspect be-

cause it is relatively technology oriented and often unknown by stake-
holders that are strictly on the business side.

Models are particularly important in giving stakeholders a feeling that

they are ‘part of the larger whole’. Often, just knowing where in the model

‘they can be found’ is important to stakeholders, even if they do not under-
stand the fine points of the model.

Communication is the crucial factor in enterprise architecture. It will

even pay off actually to employ some communication experts (think mar-
keting, PR, even entertainment!) in larger projects. As a result, you will

end up with stakeholders that are genuinely prepared to change the way

they and their business work, not just with some interesting looking plans
and models. Crucially, communication can be quite different for various

stages of system development. Therefore, it is important to have a good

communication strategy and a framework guiding you in this.

Even if people are willing to and able to read models thoroughly, text
(spoken or written) needs to be added. Models alone never suffice.

7.5 Basic Design Viewpoints

The most basic type of viewpoint is the selection of a relevant subset of the
ArchiMate concepts and the representation of that part of an architecture

that is expressed in the concepts in this selection. This is sometimes called

a ‘diagram’, akin to, for instance, the UML diagrams.
In Sect. 6.3.2, we introduced the following four metaphorical directions

from which we can identify relevant model elements:

1. ‘inwards’, towards the internal composition of the element;

2. ‘upwards’, towards the elements that are supported by it;
3. ‘downwards’, towards its realisation by other elements;

4. ‘sideways’, towards peer elements with which it cooperates.

We also use these directions to identify possibly useful viewpoints.
For the ‘composition’ viewpoints, we start from the basic structure of

our modelling language. In its elementary form, the generic meta-model

that is behind the language consists of active structural elements such as
actors, behavioural elements such as functions and processes, and passive

informational elements such as business and data objects, which are pro-

Basic Design Viewpoints 171

essed by the active elements in the course of their behaviour (see also Fig.

7.6).

From this basic structure, we can deduce a first set of viewpoint types,
containing three viewpoints that are centred around one specific type of

concept:

1. active elements, e.g., the composition of a business actor from sub-
actors, i.e., an organisation structure;

2. behaviour elements, e.g., the structure of a business process in terms of

subprocesses;

3. passive elements, e.g., the information structure in terms of data objects.

Although these viewpoints take a specific type of concept and its structure

as their focus, they are not limited to these concepts, and closely related

concepts are also included.
For the ‘upwards’ support of elements in their environment, the active

elements offer interfaces through which their services can be used.

‘Downwards’ services are realised by processes and functions, and appli-
cation components are deployed on infrastructure elements. ‘Sideways’

cooperation is achieved through collaborations between active elements

and their behaviour in the form of interactions, and flows of information

and value that relate the elements. Passive elements often play a role in
these relations, e.g., by being passed from one element to another, but are

not the focus. Hence we concentrate on the relations between the active

and behaviour elements.
Next to the design viewpoints resulting from these metaphorical direc-

tions, which focus on a limited part of an enterprise architecture, we also

need to represent the whole architecture, but in a simplified form. Espe-
cially early in the design process, when we do not yet know all the details

that are added later on, we want to express an architecture using a subset of

the ArchiMate language denoted in an informal, simplified form. This

helps to avoid the impression that the design is already fixed and immuta-
ble, which may easily arise from a more formal diagram. Furthermore,

such a high-level overview is very useful in obtaining commitment from

stakeholders at an early stage of the design (see also Sect. 7.4.6). To this
end, we introduce the Simplified viewpoint.

In each of the viewpoint types, concepts from the three layers of busi-

ness, application, and technology may be used. However, not every com-

bination of these would give meaningful results; in some cases, for exam-
ple, separate viewpoints for the different layers are advisable. Based on

common architectural practice, our experiences with the use of ArchiMate

models in practical cases, and on the diagrams used in other languages like
UML, we have selected the most useful combinations in the form of a

172 Viewpoints and Visualisation

‘standard’ set of basic viewpoints to be used with the ArchiMate concepts

(Table 7.5).

Table 7.5. Design viewpoints.

Early design Cooperation

Introductory, p. 173 Actor Cooperation, p. 175

Business Process Cooperation, p. 180
Application Cooperation, p. 182

Composition Realisation

Service Realisation, p. 179

Implementation & Deployment, p. 187

Support

Organisation, p. 175

Business Function, p. 177

Business Process, p. 181

Information Structure, p. 182

Application Behaviour, p. 185

Application Structure, p. 186

Infrastructure, p. 186

Product, p. 178

Application Usage, p. 184

Infrastructure Usage, p. 187

Some of these viewpoints have a scope that is limited to a single layer or

aspect: the Business Function and Business Process viewpoints show the

two main perspectives on the business behaviour; the Organisation view-

point depicts the structure of the enterprise in terms of its departments,
roles, etc.; the Information Structure viewpoint describes the information

and data used; the Application Structure, Behaviour, and Cooperation

viewpoints contain the applications and components and their mutual rela-
tions; and the Infrastructure viewpoint shows the infrastructure and plat-

forms underlying the enterprise’s information systems in terms of net-

works, devices, and system software. Other viewpoints link multiple layers

and/or aspects: the Actor Cooperation and Product viewpoints relate the
enterprise to its environment; the Application Usage viewpoint relates ap-

plications to their use in, for example, business processes; and the De-

ployment viewpoint shows how applications are mapped onto the underly-
ing infrastructure.

In the next subsections, we will explain these design viewpoints in more

detail and provide examples of each one. In these examples, we have made
extensive use of the abstraction rule that can be applied on chains of struc-

tural relations in ArchiMate, which was explained in Sect. 5.7. Note that it

is explicitly not the intention to limit the user of the ArchiMate language to

these viewpoints; neither do we expect an architect to draw all these dia-
grams in a given situation! They are meant to assist the modeller in choos-

ing the contents of a view, but combinations or subsets of these viewpoints

could well be useful in specific situations.

Basic Design Viewpoints 173

It is important in the examples that these views exhibit considerable

overlap., e.g., in Fig. 7.13, which shows the high-level business functions

of our ArchiSurance example, there is a business function Customer Rela-
tions. This reappears in Fig. 7.18, which shows how the Handle Claim

business process is related to a number of business functions. Different as-

pects of this business process are shown, for example, in Fig. 7.19 (its use
of information), Fig. 7.16 (realisation of services by business processes),

and Fig. 7.17 (its relations with other business processes), and there are

many more of these overlaps between views. This shows that underlying

these different views there is a single model, and each view is a projection
of the relevant elements in that model. We will use two examples through-

out the description of the basic design viewpoints to illustrate this coher-

ence:

− The handling of insurance claims;

− The policy administration systems and infrastructure.

7.5.1 Introductory Viewpoint

The Introductory viewpoint forms a subset of the full ArchiMate language

using a simplified notation. It is typically used at the start of a design tra-

jectory, when not everything needs to be detailed, or to explain the essence
of an architecture model to non-architects who require a simpler notation.

Another use of this basic, less formal viewpoint is that it tries to avoid the

impression that the architectural design is already fixed, an impression that
may easily arise when using a more formal, highly structured, or detailed

visualisation.

We use a simplified notation for the concepts (Fig. 7.8), and for the rela-
tions. All relations except ‘triggering’ and ‘realisation’ are denoted by

simple lines; ‘realisation’ has an arrow in the direction of the realised ser-

vice; ‘triggering’ is also represented by an arrow. The concepts are denoted

with slightly thicker lines and rounded corners, which give a less formal
impression. The example in Fig. 7.9 illustrates this notation.

On purpose, the layout of this example is not as ‘straight’ as an ordinary

architecture diagram; this serves to avoid the idea that the design is already
fixed and immutable. This conforms to the suggestion made in Weinberg

(1988) to use squiggly lines rather than firm lines, to show to the reader of

a view that specific parts of the view are still open to debate.

174 Viewpoints and Visualisation

Application
service

Application
component

Business
service

Business actor/role

Device Network

Business
process/
function

Business object

Data object

Event

Fig. 7.8. Concepts and notation for the Introductory viewpoint.

 Handle Claim

Customer
information

Claims
payment

 CRM
 application

 Policy
 administration

 Financial
 application

Claim
registration

Client
ArchiSurance

MainframeUnix
servers

Network

 Register Accept Valuate Pay

Fig. 7.9. Example of an Introductory view which conforms to the viewpoint of

Fig. 7.8.

Basic Design Viewpoints 175

7.5.2 Organisation Viewpoint

The Organisation viewpoint shows the structure of an internal organisation

of the enterprise, department, or other organisational entity. It can be rep-
resented in the form of a nested block diagram, but also in more traditional

ways like the organigram. An Organisation view is typically used to iden-

tify authority, competencies, and responsibilities within an organisation.

ArchiSurance

Back Office

Front Office

Home

&

Away

Car
Legal

Aid

Customer

Relations

HRM
Product

Development
Finance

Intermediary

Relations

Document

Processing

SSC

Fig. 7.10. ArchiSurance organisation structure.

In Fig. 7.10, we can see the high-level subdivision of ArchiSurance into
a front and back office, and a finance department. Within the back office,

there are three departments responsible for specific products, e.g., car,

travel, or legal aid insurance, and the shared service centre for document
processing. The front office comprises two departments that handle the re-

lations with customers and intermediaries, respectively.

7.5.3 Actor Cooperation Viewpoint

The Actor Cooperation viewpoint focuses on the relations of actors with
each other and their environment. A common example of this is what is

sometimes called a ‘context diagram’, which puts an organisation into its

environment, consisting of external parties such as customers, suppliers,

and other business partners. It is useful in determining external dependen-
cies and collaborations and shows the value chain or network in which the

organisation operates. Another important use of this viewpoint is in show-

ing how a number of cooperating (business and/or application) actors to-
gether realise a business process, by showing the flows between them.

176 Viewpoints and Visualisation

The main roles involved in the insurance business are the customer, the

insurer, the intermediary, and the customer’s bank. These cooperate in dif-

ferent settings. For example, closing an insurance contract involves the
customer, insurer, and intermediary, whereas premium collection involves

the insurer, the customer and the customer’s bank. The main collaborations

of ArchiSurance, which fulfils the role of the insurer, are shown in Fig.
7.11.

Intermediary

Customer Insurer

Contracting
Premium

Collection

Claim

Fulfilment

Customer’s

Bank

Negotiation

ArchiSurance

Fig. 7.11. Collaborations of ArchiSurance and its partners.

ArchiSurance

Back Office
Customer

Relations

Finance
Document

Processing SSC

Customer

Payment order

Claim form

(paper)

Claim form

(paper)

Claim form

(electronic)

Claim file

Customer’s

Bank

Payment

Notification

Fig. 7.12. Information flows between ArchiSurance’s departments and partners in

handling insurance claims.

Basic Design Viewpoints 177

If we look more closely at the relations between actors and roles, it is

useful to focus on the information flows between them to identify, for ex-

ample, important dependencies. In Fig. 7.12, we see the information flows
that are associated with the Handle Claim business process that is used as

an example throughout the description of these viewpoints. The types of

business objects passed between the actors are put as annotations to the
flow arrows; these correspond to the business objects used by the Handle

Claim process shown in Fig. 7.19. If needed, we could also include the in-

terfaces used in exchanging this information, e.g., telephone or e-mail.

7.5.4 Business Function Viewpoint

The Business Function viewpoint shows the main business functions of an

organisation and their relations in terms of the flows of information, value,

or goods between them. Business functions are used to represent what is
most stable about a company in terms of the primary activities it performs,

regardless of organisational changes or technological developments. Busi-

ness function architectures of companies that operate in the same market

therefore often exhibit many similarities. The Business Function viewpoint
thus provides high-level insight into the general operations of the com-

pany, and can be used to identify necessary competencies, or to structure

an organisation according to its main activities.

Insurer

Maintaining

Intermediary

Relations

Contracting

Financial

Handling

Claim

Handling

Claims

Insurance

policies

Customer information

Money

Maintaining

Customer

Relations

Asset

Management

Contracts

Product

information

Customer

information

Claims

Insurance

information

Insurance

premiums

Claim

payments

Insurance

policies

Customer

information

Product

information

Claims

Money

Claim

information

Intermediary

Customer

Customer’s

Bank

Fig. 7.13. Business functions and flows of information and money.

178 Viewpoints and Visualisation

Finance

Home

&

Away

Car Legal

Aid

Customer RelationsIntermediary Relations

Maintaining

Intermediary

Relations

Contracting

Financial

Handling

Claims Handling

Maintaining

Customer

Relations

Asset

Management

Fig. 7.14. Business functions and organisation structure.

In the example of Fig. 7.13, we can see the information flow associated
with the handling of insurance claims. Claims are submitted to the Main-

taining Customer Relations business function, processed by Claim Han-

dling, and paid by Financial Handling. In the Business Process viewpoint
(Sect. 7.5.5), we will see a more detailed depiction of this process. In Fig.

7.14, these business functions are mapped onto the responsible organisa-

tional units that were shown in Fig. 7.10.

7.5.5 Product Viewpoint

The Product viewpoint depicts the value this product offers to the custom-

ers or other external parties involved and shows the composition of one or

more products in terms of the constituting (business or application) ser-
vices, and the associated contract(s) or other agreements. It may also be

used to show the interfaces (channels) through which this product is of-

fered, and the events associated with the product.
A Product view is typically used in designing a product by composing

existing services or by identifying which new services have to be created

for this product, given the value a customer expects from it. It may then

serve as input for business process architects and others that need to design
the processes and IT systems that realise this product.

Basic Design Viewpoints 179

Travel Insurance

Claim

registration

service

Customer

information

service

Claims

payment

service

Insurance policyInsurance

application

service

Premium

payment

service

Customer

data mutation

service

"be insured"

(security)

Customer

Fig. 7.15. The travel insurance product.

A typical insurance product of ArchiSurance is depicted in Fig. 7.15.

The value to the customer of an insurance is typically the added security it

provides. The services mentioned here are realised by various business
processes, an example of which is given in Sect. 7.5.6.

7.5.6 Service Realisation Viewpoint

The Service Realisation viewpoint is used to show how one or more busi-
ness services are realised by the underlying processes (and sometimes by

application components). Thus, it forms the bridge between the Product

viewpoint and the Business Process viewpoint. It provides a ‘view from

the outside’ of one or more business processes.

Claim

registration

service

Customer

inform ation

service

Claims

paym ent

service

Customer

Handle ClaimClose Contract Col lect Prem iumInform Customer

Insurance

appl ication

service

Premium

paym ent

service

Fig. 7.16. Realisation of business services by ArchiSurance business processes.

180 Viewpoints and Visualisation

Business services are realised by business processes. In Fig. 7.15, we

saw the services that constitute the travel insurance product. The business

processes that realise these services are shown in Fig. 7.16. For example,
the Claim registration service is realised by the Handle Claim business

process that we use as an example throughout this chapter.

7.5.7 Business Process Cooperation Viewpoint

The Business Process Cooperation viewpoint is used to show the relations
of one or more business processes with each other and/or their surround-

ings. It can be used both to create a high-level design of business processes

within their context and to provide an operational manager responsible for
one or more such processes with insight into their dependencies. Important

aspects of coordination are:

− causal relations between the main business processes of the enterprise;

− the mapping of business processes onto business functions;

− realisation of services by business processes;

− the use of shared data;

− the execution of a business process by the same roles or actors.

Each of these can be regarded as a ‘sub-viewpoint’ of the Business Process
Cooperation viewpoint. Below, we give examples of some of the resulting

views.

Handle Claim

Close Contract Collect Premium
Request for

insurance

Damage

occurred

Request for

information

Inform Customer

Develop Product Manage Assets
Opportunity

identified

Request for

information

Inform Intermediary

Fig. 7.17. Some of the main business processes, triggers, and relations of Archi-

Surance.

Basic Design Viewpoints 181

Customer

Relations

Claim

Handl ing

Financial

Handl ing

 Handle Claim

Register PayValuateAccept
Damage

occurred

Fig. 7.18. The Handle Claim business process mapped onto the business func-

tions.

In Fig. 7.17, the most important business processes of ArchiSurance are

depicted. It also shows their relations, e.g., the Collect Premium process

needs to be preceded by the Close Contract process, since of course no
premium can be collected before the insurance policy has been issued.

This figure also shows the Handle Claim process that occurs in many of

the other viewpoints. In Fig. 7.18, the Handle Claim business process of

Fig. 7.19 is mapped onto the business functions of Fig. 7.13.

7.5.8 Business Process Viewpoint

The Business Process viewpoint is used to show the high-level structure

and composition of one or more business processes. Next to the processes
themselves, this viewpoint contains other directly related concepts such as:

− the services a business process offers to the outside world, showing how

a process contributes to the realisation of the company’s products;

− the assignment of business processes to roles, which gives insight into

the responsibilities of the associated actors;

− the information used by the business process.

Each of these can be regarded as a ‘sub-viewpoint’ of the Business Process
viewpoint.

 Handle Claim

Register PayValuateAccept

Damage claim
Claim

form

Customer file Insurance pol icy

Damage

occurred

Fig. 7.19. The Handle Claim business process and its use of information.

182 Viewpoints and Visualisation

In Fig. 7.19, the Handle Claim business process is shown, together with

the information it uses. This shows in more detail which subprocesses are

carried out in handling insurance claims.

7.5.9 Information Structure Viewpoint

The Information Structure viewpoint is basically identical to the traditional

information models created in the development of almost any information

system. It shows the structure of the information used in the enterprise or
in a specific business process or application, in terms of data types or (ob-

ject-oriented) class structures. Furthermore, it may show how the informa-

tion at the business level is represented at the application level in the form
of the data structures used there, and how these are then mapped onto the

underlying infrastructure, e.g., by means of a database schema.

In Fig. 7.20, the most important business objects of ArchiSurance are
shown. Some of these are used in the Handle Claim business process, as

depicted in Fig. 7.19.

Damage claim
Claim

form

Customer file

Insurance policyInsurance request

Car insurance

policy

Home insurance

policy

Travel insurance

policy

Liability

insurance policy

Legal aid

insurance policy

Custom er

Fig. 7.20. Information model of ArchiSurance.

7.5.10 Application Cooperation Viewpoint

The Application Cooperation viewpoint shows the relations of a number of

applications or components. It describes the dependencies in terms of the

information flows between them, or the services they offer and use. This
viewpoint is typically used to create an overview of the application land-

scape of an organisation.

Basic Design Viewpoints 183

This viewpoint is also used to express the coordination or orchestration

(i.e., internal coordination) of services that together support the execution

of a business process. By modelling the interdependencies between ser-
vices, the coordination of the underlying applications is established in a

more independent way. If this coordination is centralised and internal to

the enterprise, we speak of ‘orchestration’; in the case of coordination be-
tween independent entities, the term ‘choreography’ is often used.

The front- and back-office applications of ArchiSurance are shown in

Fig. 7.21. It is clear that the back office is structured according to the dif-

ferent types of products, whereas the front office is already more inte-
grated. One of the applications shown is the Home & Away policy admini-

stration used in several other viewpoints as well.

Front office appl ications

Back office applications

Home & Away
Policy

administration

Home & Away
Financial

application

Car Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM appl ication
Legal Aid

CRM

Bank
system

Fig. 7.21. Applications and information flow of ArchiSurance.

Some of the connections between the ArchiSurance applications are
shown in Fig. 7.22, which shows that ArchiSurance uses the Enterprise

Service Bus concept to link its applications. In Fig. 7.23, we see in more

detail how the Claim information service from the Home & Away Policy
administration is used by the department’s Financial application, through

an interface in which the message queuing service from the lower-level in-

frastructure is used (see also Fig. 7.28).

184 Viewpoints and Visualisation

ArchiSurance Service Bus

Home & Away

Policy

administration

CRM

application

Home & Away

Financial

application

Customer

information

service

Policy

information

service

Bank

system

Money transfer

service

Fig. 7.22. Applications connected through the ArchiSurance Service Bus.

Home & Away

Policy

administration

Home & Away

Financial

application

Policy

information

service

Messaging

service

Fig. 7.23. Details of the connection between the Home & Away Policy admini-

stration and Financial application.

7.5.11 Application Usage Viewpoint

The Application Usage viewpoint describes how applications are used to

support one or more business processes, and how they are used by other

applications. It can be used in designing an application by identifying the
services needed by business processes and other applications, or in de-

signing business processes by describing the services that are available.

Furthermore, since it identifies the dependencies of business processes
upon applications, it may be useful to operational managers responsible for

these processes.

In Fig. 7.24 it is shown how the Handle Claim business process uses the
application services offered by several applications. Each of these services

is realised by the behaviour of an application, an example of which is

given in Fig. 7.25.

Basic Design Viewpoints 185

 Handle Claim

Register PayValuateAccept

Home & Away

Policy

administration

CRM

appl ication

Home & Away

Financial

appl ication

Customer

administration

service

Claims

administration

service

Payment

service

Printing

service

Scanning

service

Document

management

system

Fig. 7.24. Application usage by the Handle Claim business process.

7.5.12 Application Behaviour Viewpoint

The Application Behaviour viewpoint describes the internal behaviour of
an application or component, for example, as it realises one or more appli-

cation services. This viewpoint is useful in designing the main behaviour

of applications or components, or in identifying functional overlap be-
tween different applications.

Hom e & Away Policy adm inistration

Policy creation

Calculate

prem ium

Calculate

risk

Create

policy

Store

policy

Policy

creation

service

Custom er file

data

Insurance policy

data

Insurance request

data

Hom e & Away

Financial

adm inistration

Prem ium

col lection

Policy

inform ation

service

Fig. 7.25. Behaviour of the Home & Away Policy administration in realising the

Policy creation service.

Part of the behaviour of the Home & Away Policy administration is

shown in Fig. 7.25. The individual application functions are chained to-
gether and collectively realise the Policy creation application service. The

186 Viewpoints and Visualisation

communication with the Financial administration takes place in an interac-

tion that realises the Policy information service.

7.5.13 Application Structure Viewpoint

The Application Structure viewpoint shows the structure of one or more

applications or components. This viewpoint is useful in designing or un-

derstanding the main structure of applications or components and the asso-

ciated data, e.g., to create a first-step work breakdown structure for build-
ing a system, or in identifying legacy parts suitable for migration.

Home & Away Policy administration

Risk

Assessment

Policy data

management

Customer

data access

Damage claim data Customer file dataInsurance policy

data

Claim data

management

Insurance request

data

Fig. 7.26. Main structure of the Home & Away Policy administration.

Fig. 7.26 shows the main components that constitute the policy admini-

stration of ArchiSurance’s Home & Away department. It also depicts some
of the important data objects used by these components. These data objects

are realisations of the business objects of Fig. 7.20.

7.5.14 Infrastructure Viewpoint

The Infrastructure viewpoint comprises the hardware and software infra-
structure upon which the application layer depends. It contains physical

devices and networks, and supporting system software such as operating

systems, databases, and middleware.
The physical infrastructure of ArchiSurance and its intermediaries is

shown in Fig. 7.27.

Basic Design Viewpoints 187

ArchiSurance

Unix server farm

Mainframe

Intermediary

Admin

server
LAN

NAS

File server

LAN
TCP/IP

Network
Firewall Firewall

Unix
server

Unix
server

DBMS

Message
Queing

CICS

Fig. 7.27. Infrastructure of ArchiSurance.

7.5.15 Infrastructure Usage Viewpoint

The Infrastructure Usage viewpoint shows how applications are supported

by the software and hardware infrastructure: infrastructure services deliv-
ered by the devices, system software, and networks are provided to the ap-

plications.

An example of this viewpoint is given in Fig. 7.28, which shows the

use, by a number of back-office applications, of the messaging and data
access services offered by ArchiSurance’s infrastructure.

Mainframe

DBMS (DB2)
Message
Queing

Messaging

service

Data access

service

Home & Aw ay
Policy

adm inistration

Home & Away
Financial

appl ication

Car Insurance
appl ication

Legal Aid
backoffice

system

Fig. 7.28. Use of infrastructure services by ArchiSurance’s back-office applica-

tions.

This viewpoint plays an important role in the analysis of performance

and scalability, since it relate the physical infrastructure to the logical

188 Viewpoints and Visualisation

world of applications. It is very useful in determining the performance and

quality requirements of the infrastructure based on the demands of the

various applications that use it. In Chap. 8, we will describe a quantitative
analysis technique that can be used to determine, for example, the load on

the infrastructure, based on its use by applications (and their use by busi-

ness processes).

7.5.16 Implementation & Deployment Viewpoint

The Implementation & Deployment viewpoint shows how one or more ap-

plications are deployed on the infrastructure. This comprises the mapping

of (logical) applications and components onto (physical) artifacts like, for
instance, Enterprise Java Beans, and the mapping of the information used

by these applications and components onto the underlying storage infra-

structure, e.g., database tables or other files. In security and risk analysis,
Deployment views are used to identify critical dependencies and risks.

Fig. 7.29 shows the mapping of logical application components of the

Home & Away Policy administration (see Fig. 7.26) used in several of the

other examples onto physical artifacts such as Enterprise Java Beans.

Integrated Web access

Home & Away Policy administration

Policy data

management

Customer

data access

Claim data

managem ent

Web access

Client-side

(browser)

Web access

Server-side

(JSP)

Customer data

Business logic

(EJB)

Policy data

Business logic

(EJB)

Claim data

Business logic

(EJB)

Customer data

Persistence

(EJB)

Policy data

Persistence

(EJB)

Claim data

Persistence

(EJB)

DBMS

(DB2)

Logical

Physical

Fig. 7.29. Implementation of the Home & Away Policy administration.

Summary 189

7.6 Summary

In the previous sections, we have advocated a viewpoint-oriented approach

to enterprise architecture modelling, in which architects and other stake-
holders can define their own views of the architecture. In this approach

views are specified by viewpoints, which define abstractions on the set of

models representing the enterprise architecture, each aimed at a particular
type of stakeholder and addressing a particular set of concerns.

We have described the use of viewpoints in communication, and the dis-

tinction between an architecture model, a view of that model, and its visu-
alisation and manipulation. We have presented guidelines for the selection

and use of viewpoints, and outlined a number of viewpoints in the Archi-

Mate language that can be used by architects involved in the creation or

change of enterprise architecture models.

8 Architecture Analysis

As we have argued in previous chapters, organisational effectiveness can-
not be achieved through local optimisations, but is realised by well-or-

chestrated interaction of organisational components (Nadler et al. 1992).

To create such an integrated perspective of enterprise architecture, we need
both a description technique for architectural models and model-based

analysis techniques to realise this global optimisation in practice.

In Chap. 5, we have presented a description language that not only cap-

tures the complexity of architectural domains and their relations, but also
enables the integration at the appropriate level of abstraction of already ex-

isting partial architecture models. However, the value of architecture mod-

els increases significantly if they can also be used to support the decision-
making process. In this chapter we argue that whenever a change in the en-

terprise architecture is needed, model-based analysis plays a central role.

Therefore, we present a number of techniques that help architects and

stakeholders to compare alternative designs and, hence, take well-informed
design decisions when making trade-offs between aspects like cost, qual-

ity, and performance and to be able to study the impact of a change to the

design.
This chapter also explains what the added value of enterprise architec-

ture analysis techniques is in addition to existing, more detailed, and do-

main-specific ones for business processes or software, for example.
Analogous to the idea of using the ArchiMate enterprise modelling lan-

guage to integrate detailed design models, the chapter demonstrates that

analysis, when considered at a global architectural level, can play a role in

the integration of existing detailed techniques or of their results.

8.1 Analysis Techniques

One of the central motivations for enterprise architecture in general is get-

ting to grips with change. Architects and stakeholders want to take well-in-
formed design decisions. To that end, they need to compare alternative de-

signs, make trade-offs between aspects like cost, quality, and performance,

and know the impact of a change across all aspects of an architecture.

192 Architecture Analysis

Given the size and complexity of enterprise architectures, this is something

that can no longer be done by hand and requires sophisticated analysis

techniques. These analysis techniques do more than simply ‘walk through
a picture’, but require well-defined semantic underpinnings and advanced

analysis algorithms.

Analytical Simulation

Functional

Quantitative

Fig. 8.1. Analysis dimensions.

We can classify architecture analysis techniques according to different
aspects (Fig. 8.1). First, we make a distinction based on the types of analy-

sis inputs and results: functional (e.g., structural and dynamic properties)

and quantitative (e.g., performance and costs).
Functional analysis is performed to gain insight into the functional as-

pects of an architecture. Among others, it is used to understand how a sys-

tem that conforms to an architecture works, to find the impact of a change

on an architecture, or to validate the correctness of an architecture.
Functional analysis techniques do not answer quantitative questions,

like ‘how quick’ or ‘how cheap’. These are typically questions addressed

by the quantitative analysis techniques. Usually, architectural models do
not provide sufficient information to perform detailed quantitative studies.

In our view, an approach for quantitative analysis of enterprise architec-

tures should make it possible to structure and relate quantitative results ob-
tained with existing detailed analysis methods (e.g., queuing analysis or

simulation).

Second, for both functional and quantitative analysis, we distinguish

two main types of techniques: analytical techniques and simulation.
Basically, simulation can be seen as the ‘execution’ of a model. Func-

tional simulation and animation are useful to illustrate the dynamic behav-

iour of a system. The aim of functional simulation is to gain insight into
the properties and behaviour of an architecture. Architects can ‘play’ with

the architecture and see how it works, feels, looks, can be adapted to cer-

tain changes, etc. Moreover, functional simulation can also play an impor-

Quantitative Analysis 193

tant role in the communication between stakeholders, by giving them a

better common understanding of the architecture. Interpretation problems,

often stemming from the high level of abstraction of architectures, may
come to light when using functional simulation. Quantitative simulation is

used to make statistical statements about the quantitative measures of a

system based on multiple simulation runs. It can be seen as performing
‘measurements’ in a model. Thus, quantitative simulation allows for a

thorough examination of the performance measures in a specific situation.

In this chapter, we mainly consider formal and analytical analysis tech-

niques. In contrast to simulation, these are not of a statistical nature, but
provide a unique, reproducible result. Analytical techniques for quantita-

tive analysis are typically more efficient than quantitative simulation, and

therefore more suitable for providing the architect with a first indication of
performance measures and bottlenecks in an architecture model. They are

also useful when a comparison of a (large) number of alternatives is

needed in so-called ‘what if’ analysis.
Another issue to be addressed when using analysis techniques for enter-

prise architectures is whether to apply existing techniques, or to develop

new ones. Buy or build? In the first case, two other questions are to be an-

swered: which technique to choose from the available ones, and how to
apply it? In the second case, the questions are for what problem a tech-

nique is developed, and how the development itself can be carried out.

This chapter illustrates both of the above-mentioned options. For quan-
titative analysis, described in Sect. 8.2, we have chosen to propose a new

top-down bottom-up approach. Nevertheless, this approach also facilitates

the integration with existent, domain-specific analysis techniques. For
functional analysis, explained in Sect. 8.3, we have chosen the first ap-

proach, i.e., we show how existing techniques from formal methods can be

used in analysing the functional properties of architectures.

8.2 Quantitative Analysis

As noted earlier, enterprise architecture is concerned with a description of

how all the relevant elements that make up an enterprise interrelate. It cov-

ers aspects ranging from business processes and products, through soft-
ware applications, to the technical infrastructure. The relations between

these ‘layers’ play a central role. Also, from a quantitative perspective,

these aspects are interrelated in several ways. For example, the business
processes impose a workload on the software applications and infrastruc-

ture, while the performance characteristics of the lower layers directly in-

fluence the performance of the higher layers.

194 Architecture Analysis

There is a common misconception that quantitative analysis is ‘too de-

tailed’ to be performed at the architecture level. However, performance

engineering practitioners argue that next to functional aspects, non-
functional (quantitative) aspects of systems should also be taken into ac-

count at all stages of the design of a system, and not just as an afterthought

(Smith 1990). This implies that these aspects are also relevant for enter-
prise architectures. In this case, however – as for enterprise architecture

modelling – the quantitative aspects are considered at a relatively global

level. Also, the emphasis is on structure: enterprise architectures can pro-

vide a useful instrument to structure quantitative properties of organisa-
tions and systems.

Quantitative analysis can serve several purposes. In the first place it is

often used for the optimisation of, for example, processes or systems, by
quantifying the effect of alternative design choices. Similarly, it can be

used to obtain measures to support impact-of-change analysis: what is the

quantitative effect of changes in a design? This shows that the distinction
between functional and quantitative analysis is not always sharp. A third

application of quantitative analysis is capacity planning, e.g., how many

people should fulfil a certain role to finish the processes on time, or how

should the infrastructure be dimensioned (processing, storage, and network
capacity) given an expected workload?

Models of organisations and systems can be quantified in several ways.

Measures of interest may include:

− Performance measures, i.e., time-related measures such as completion

and response times, throughputs, resource utilisations.

− Reliability measures such as availability and dependability.

− Cost measures.

The techniques and examples presented in this section focus on perform-

ance measures.

8.2.1 Performance Views

As explained earlier, the different ways to structure an enterprise architec-

ture model provide different views of the same model. These views are

aimed at different stakeholders and their concerns. Also in the context of
the performance of a system, a number of views can be discerned, each

having their own performance measures, explained below:

− User/customer view (stakeholders: customer; user of an application or

system): The response time is the time between issuing a request and re-
ceiving the result, e.g., the time between the moment that a customer ar-

Quantitative Analysis 195

rives at a counter and the moment of completion of the service, or the

time between sending a letter and receiving an answer. Also in the sup-

porting IT applications the response time plays an important role; a
well-known example is the (mean) time between a database query and

the presentation of its results. Examples of ArchiMate concepts for

which the calculation of the response time is suited are actors, roles, and
services.

− Process view (stakeholders: process owner; operational manager): Com-

pletion time is the time required to complete one instance of a process

(possibly involving multiple customers, orders, products, etc., as op-
posed to the response time, which is defined as the time to complete one

request). In batch processing by means of an information system the

completion time can be defined as the time required to finish a batch.

− Product view (stakeholders: product manager; operational manager):

Processing time is the amount of time that actual work is performed on
the realisation of a certain product or result, i.e., the response time with-

out waiting times. The processing time can be orders of magnitude

lower than the response time. In a computer system, an example of the
processing time is the actual time that the CPU is busy.

− System view (stakeholders: system owner/manager): Throughput is the

number of transactions or requests that a system completes per time unit

(e.g., the average number of customers served per hour). Related to this

is the maximum attainable throughput (also called the processing capac-
ity, or in a more technically oriented context such as communication

networks, the bandwidth), which depends on the number of available re-

sources and their capacity.

− Resource view (stakeholders: resource manager; capacity planner):

Utilisation is the percentage of the operational time that a resource is

busy. On the one hand, the utilisation is a measure of the effectiveness

with which a resource is used. On the other hand, a high utilisation can
be an indication of the fact that the resource is a potential bottleneck,

and that increasing that resource’s capacity (or adding an extra resource)

can lead to a relatively high performance improvement. In the case of

humans, the utilisation can be used as a more or less objective measure
for work stress. In information systems architectures, a typical example

of the utilisation is the network load. Examples of ArchiMate concepts

for which the calculation of the utilisation is suited are the infrastructure
concepts and the actor.

The different performance views are summarised in Fig. 8.2. Performance

measures belonging to the different views are interrelated, and may be in
conflict when trying to optimise the performance of a system. For exam-

196 Architecture Analysis

ple, a higher throughput leads to a higher resource utilisation, which may

be favourable from a resource manager’s point of view; however, this gen-

erally leads to an increase in the response times, which is unfavourable
from a user’s point of view. Therefore, when aiming to optimise the per-

formance of a system, it is important to have a clear picture of which per-

formance measures should be optimised.

Process view Product view

Resource view System view

User viewUser view

Response

time

Response

time

Completion

time

Completion

time Processing

time

Processing

time

UtilisationUtilisation ThroughputThroughput

Fig. 8.2. Performance views.

8.2.2 Performance Analysis Techniques for Architectures

Although several software tools exist to model enterprise architectures,
hardly any attention has been paid to the analysis of their quantitative as-

pects. For detailed design models of (distributed) systems, such as comput-

ing and telecommunication systems, and manufacturing systems, a broad

range of performance analysis techniques have been proposed. There are
very efficient static techniques that offer relatively inaccurate first esti-

mates or bounds for the performance. Analytical solutions of queuing

models are more accurate but also more computation intensive, while they
still impose certain restrictions on the models. With detailed quantitative

simulations, any model can be analysed with arbitrary accuracy, although

this presumes that accurate input parameters are available.

As mentioned above, enterprise architecture covers a broad range of as-
pects, from the technical infrastructure layer (e.g., computer hardware and

networks), through software applications running on top of the infrastruc-

ture, to business processes supported by these applications. Within each of
these layers, quantitative analysis techniques can be applied, which often

Quantitative Analysis 197

require detailed models as input. In this subsection, we will only be able to

give a global impression of analysis approaches for each of these layers.

We also noted earlier that enterprise architecture is specifically con-
cerned with the relations between the layers. Also from a quantitative per-

spective the layers are interrelated: higher layers impose a workload on

lower layers, while the performance characteristics of the lower layers di-
rectly influence the performance of the higher layers. However, techniques

that cover quantitative analysis throughout this whole ‘stack’ hardly exist.

Infrastructure Layer

Traditionally, approaches to performance evaluation of computer systems
and communication systems (see Harrison and Patel 1992) have a strong

focus on the infrastructure domain. Queuing models, for example, describe

the characteristics of the (hardware) resources in a system, while an ab-
stract stochastic arrival process captures the workload imposed by the ap-

plications. Also, a lot of literature exists on performance studies of specific

hardware configurations, sometimes extended to the system software and

middleware levels. Most of these approaches commonly are based on de-
tailed models and require detailed input data.

Application Layer

Performance engineering of software applications (see Smith 1990) is a

much newer discipline compared to the traditional techniques described
above. A number of papers consider the performance of software architec-

tures at a global level. Bosch and Grahn (1998) present some first observa-

tions about the performance characteristics of a number of often occurring
architectural styles. Performance issues in the context of the SAAM

method (see Kazman et al. 1994) for scenario-based analysis are consid-

ered in Lung et al. (1998).
Another direction of research addresses the approaches that have been

proposed to derive queuing models from a software architecture described

in an architecture description language (ADL). The method described by

Spitznagel and Garlan (1998) is restricted to a number of popular archi-
tectural styles (e.g., the distributed message passing style but not the pipe

and filter style). Other similar approaches are described in Aquilani et al.

(2001) and Williams and Smith (1998). In Di Marco and Inverardi (2004)
queuing models are derived from UML 2.0 specifications, which in most

cases, however, do not have an analytical solution.

As we noted in Sect. 3.1.1, compositionality is an important issue in ar-
chitecture. In the context of performance analysis, compositionality of

198 Architecture Analysis

analysis results may also be a useful property. This means that the per-

formance of a system as a whole can be expressed in terms of the per-

formance of its components. Stochastic extensions of process algebras (see
Hermanns et al. 2002) are often advocated as a tool for compositional per-

formance analysis. However, process-algebra-based approaches to per-

formance analysis are still fairly computation intensive, because they still
suffer from a state space explosion. Moreover, while they allow for a com-

positional specification of performance models, this does not necessarily

mean that the analysis results are also compositional.

Business Layer

Several business process modelling tools provide some support for quan-

titative analysis through discrete-event simulation. Also, general-purpose

simulation tool such as Arena3 or ExSpect4 (based on high-level Petri nets)
are often used for this purpose. A drawback of simulation is that it requires

detailed input data, and for inexperienced users it may be difficult to use

and to interpret the results correctly. BiZZdesigner5 offers, in addition to

simulation, a number of analytical methods. They include completion time
and critical path analysis of business processes (see Jonkers et al. 1999)

and queuing model analysis (see Jonkers and van Swelm 1999). Petri nets

(and several of its variations) are fairly popular in business process model-
ling, either to model processes directly or as an underlying formalism for

other languages (e.g., see Schomig and Rau 1995). They offer possibilities

for performance analysis based on simulation, as described above, but they
also allow for analytical solutions (which are, however, fairly computation

intensive).

8.2.3 Quantitative Modelling

In this section we present our approach for the quantitative modelling of
service-oriented enterprise architectures expressed in the ArchiMate lan-

guage. First we show that ArchiMate models follow a certain structure that

is explained by means of an ‘analysis meta-model’. Our technique focuses

on a subset of the ArchiMate language, namely the modelling constructs
encompassed by this simple meta-model. Then we clarify what the nec-

essary quantitative input is for our analysis technique. We also introduce

an example that shows how quantitative information can be attached to

3 http://www.arenasimulation.com
4 http://www.exspect.com
5 http://www.bizzdesign.com

Quantitative Analysis 199

model elements and their relations and that will later also illustrate the ap-

plication of the algorithms.

Model Structure

As shown in Sect. 5.2, many architecture models can be viewed as a hier-

archy of layers. We use this layered view for performance analysis as well,

because it makes the explanation of our approach easier. Furthermore, lay-

ering will help the modeller to formulate and describe clearly the problem
being analysed.

For each meta-model layer we can distinguish one or more model layers

of two types: service layers and realisation layers. A service layer exposes
functionality that can be ‘used by’ the next higher layer, while a realisation

layer models shows how the consecutive service layer is ‘realised’. The

number of these layers is not fixed, but a natural layering of an ArchiMate
model will contain the succession of layers depicted in Fig. 8.4.

Looking at the horizontal structure of the meta-model, we can see that

realisation layers typically contain three types of elements. They might

model some pieces of internal behaviour (expressed as processes or func-
tions). Further, each behaviour element can access one ore more objects

and it is assigned to exactly one resource (e.g., actors, devices, application

components, etc.).

service

resource

service

0..1

*

*

object
* *

internal

behaviour *

TR,,λ

TR,,λ

U,λ

TR,,λ

U,λ

f Sf ,

Sf ,

Sf ,

Cf ,

1=n

1=n

n

Service layer

Service layer

Realisation layer

n

0..1

0..1

Fig. 8.3. Structural properties of ArchiMate models.

Thus we can summarise our findings in terms of the ‘analysis meta-

model’ depicted in Fig. 8.3, where

200 Architecture Analysis

− ‘object’ can be a business object, a data object, or an artifact;

− ‘resource’ can be a business role, a business actor, an application com-

ponent, a system software component, a node, or a device;

− ‘internal behaviour’ can be a business process, a business function, an

application function, or an infrastructure function;

− ‘service’ can be an organisational service, an application service, or an

infrastructure service.

Approach

Before we can analyse an ArchiMate model, we have to define clearly the

quantities that can be assigned to the different ArchiMate concepts and re-
lations. In Sect. 8.2.1 we have identified the relevant performance meas-

ures, independent of any modelling language. However, we have to make

these measures specific for ArchiMate models. One may notice that not all

the ArchiMate language elements are included in the model structure given
in Fig. 8.3. Indeed, we consider some of them irrelevant for the current ap-

proach (e.g., the meaning concept, the aggregation and association rela-

tions, etc.) and, therefore, they will be ignored.
Iacob and Jonkers (2005) explore possible ways in which the concepts

and relations that have been defined in the ArchiMate language can be

quantified. An important observation made is that the richest ArchiMate

relations in terms of quantification prospects are the ‘triggering’, ‘access’,
‘realisation’, and ‘used by’ relations. This is a good indication that any

quantitative analysis method that might be used in the context of Ar-

chiMate (sub-)models must focus on this type of relation. The fact that
‘triggering’ relations are easily quantifiable does not come as a surprise. In

fact, triggering relations are essential in revealing the behaviour of dy-

namic systems. Thus, we can draw the conclusion that any quantitative
method that works for (business) process-oriented modelling formalisms

can be applied (possibly after slight adaptations) as well for ArchiMate

models. However, these types of methods have certain limitations from the

ArchiMate point of view for at least two reasons. First, such methods are
usually applied locally to partial architectural models that expose a map-

ping between a piece of behaviour and some resources (see Jonkers and

van Swelm 1999). Second, because only two types of elements, namely
behaviour elements (e.g., processes, events, etc.), and resources (e.g., ac-

tors, devices, etc.) are concerned, such methods do not traverse all the ar-

chitecture domains. They typically work within at most two layers of the
architecture model (e.g., the process and the infrastructure layer, or the

process and the organisational/actor–roles layer). We will refer to such

analysis methods as being horizontal methods. We believe that apart from

Quantitative Analysis 201

the classical horizontal methods we must expose vertical methods that

work across multiple domains. We anticipate that such methods must focus

on the ‘used by’ and ‘realisation’ relations bridging the different architec-
tural domains. Nevertheless, the distinction between horizontal and verti-

cal methods must not be considered restrictive at all, since (as it will also

result from the example we are giving) the two types of methods can be
combined, such that the output (i.e., calculated performance measures) of

one type of method will provide the input quantities for another ‘follow-

up’ analysis method.

Analysis across an architecture model is possible through the propaga-
tion of quantities through layers. A natural option for this is to consider

workload measures (e.g., arrival frequencies) that are imposed as a ‘de-

mand’ on the model elements by the users (located in the higher layers,
e.g., customers). These quantities propagate towards the lower layers,

eventually being translated in demands on each model element. Once

workloads have been determined, we look at the effort these workloads re-
quire from the resources (modelled by structural elements) and from the

behaviour elements (modelled by services, processes, and functions). This

effort can be expressed in terms of performance measures (e.g., utilisations

for resources, response and processing times for behaviour elements)
and/or costs; it starts in the infrastructure and propagates back to the higher

layers. In summary, our approach consists of the following two phases (see

Fig. 8.4): a top-down calculation of the workloads imposed by the users;
this provides input for a bottom-up calculation of performance measures.

workloadworkload
performance

measures

performance

measures

Technical infrastructure

Infrastructural services

Application components

Application services

Business processes

Organisational services

CustomersCustomers

Fig. 8.4. Layers of ArchiMate models.

202 Architecture Analysis

Quantitative Input Data

One of the most difficult tasks related to quantitative analysis is to obtain

reliable input data. There are several possible sources for this data. For ex-

isting systems or organisations, measurement can be one of the most re-
liable methods, although it is not easy to do this in a correct way: among

others, it should be clearly defined what exactly is to be measured, the

number of measurements must be sufficient, and the measurements must

be taken under various circumstances that can occur in practice.
In case the system or organisation is still to be developed, measurement

is no option. Possible alternatives are then the use of documentation of

components to be used, or to use estimates (e.g., based on comparable ar-
chitectures). However, one should keep in mind that it is often very diffi-

cult to interpret correctly the available numerical data, and to evaluate the

reliability of the available data.
We assume that the following quantitative input is provided for analysis

(see Fig. 8.3):

− For any ‘used by’ and ‘access’ relation e, a weight
e

n , representing the

average number of uses and accesses.

− For any behaviour element a, a service time
a

S , representing the time

spent internally for the realisation of a service (excluding the time spent

waiting for supporting services). We assume that a service inherits the

service time value of the element realising it.

− For any resource r, a capacity
r

C .

− For any node a, an arrival frequency
a
f . Typically, arrival frequencies

are specified in the top layer of a model, although we do allow for the

specification of arrival frequencies for any node in the model.

Example

To show the practical use of this analysis technique, we illustrate our ap-

proach with the following simple example.

Suppose we want to analyse an insurance company that uses a document

management system for the storage and retrieval of damage reports. We
assume that the document management system is a centralised system,

used by multiple offices throughout the country, which means that it is

quite heavily used. A model of this system is depicted in Fig. 8.5. This
model covers the whole stack from business processes and actors, through

applications, to the technical infrastructure.

Quantitative Analysis 203

Claim handling

process

Claim sub-

mission process

search damage

reports

view damage

report

store damage

report

Report scanning

application

search

component

view

component

database

query

store

document

retrieve

document
database

entry

Database

system

Document

management system

Database

server

Document

server

document

access

data

access

Damage

expertAdministrator
dayf /600= dayf /200=

1=n 5.1=n 1=n

sS 5.0= sS 2= sS 8=

1=n 1=n 1=n 1=n

sS 5.0= sS 5.0=sS 5= sS 5=

1=n

1=n

sS 2.0=sS 6=

Fig. 8.5. Document management example.

There are three applications offering services that are used directly by
the business actors. The Administrator can search in the metadata data-

base, resulting in short descriptions of the reports that meet the query and

view reports that are returned by a search. The report scanning application
is used to scan, digitise, and store damage reports (in PDF format). In addi-

tion to the two applications that are used directly by the end user, there are

two supporting application components: a database access component,

providing access to the metadata database, and a document management

204 Architecture Analysis

component, providing access to the document base. Finally, the model

shows the physical devices of which the database access and document

management components make use. They use file access services provided
by these devices.

In the model we also specify the input quantities for the analysis. On the

‘used by’ relations, we specify workload values, in terms of the average

number of uses n of the corresponding service by the layer above. For the

business processes, an arrival frequency f is specified. In this example we

assume that all resources have the default capacity 1. Finally, for service

elements we may specify a service time S.

8.2.4 Quantitative Analysis Technique

The goal of our approach is to determine the following performance meas-

ures (see Fig. 8.3):

− the workload (arrival rate)
a

λ for each node a (note that, provided that

no resources are overloaded, the throughput for each node is equal to its

arrival rate);

− the processing time
a

T and the response time
a

R , for each behaviour

element or service;

− the utilisation
r

U , for each resource r.

To derive the above-mentioned performance measures, given the input

values, we proceed in three steps:

1. We will first ‘normalise’ any input model, using model transformations,

in order to generate a model that is compliant with the structure pre-

sented in Fig. 8.3.

2. Top-down calculation of workloads (arrival rates) λ.

3. Bottom-up computation of performance measures T , U , and R.

Step 1: Model Normalisation

Typical ArchiMate models often do not fully conform to the ArchiMate

meta-model. This is due to the fact that during the modelling process, ab-

straction rules are used to create simplified views of the architecture. These
abstractions have, however, a formal basis in an operator that has been de-

rived for the composition of relations. The derivation of this operator has

been described in great detail in van Buuren et al. (2004). It allows, for in-

stance, the composition of a realisation relation with any consecutive used
by relation, resulting in a new used by relation that short-circuits, in this

case, a service.

Quantitative Analysis 205

Therefore, the first step in our approach addresses a model transforma-

tion procedure, which will derive from any input model a ‘normalised’

one, i.e., a model, which is fully compliant with the structure described in
Fig. 8.3. Since some of the concepts and relations are not relevant for our

approach, the normalisation procedure starts by eliminating them from the

original model. The resulting model will then be subjected to a series of
model transformations. One example of such a transformation rule is given

in Fig. 8.6. The set of all possible transformation rules is finite, which

makes the development of a normalisation algorithm based on these rules

rather straightforward.

Resource A

Resource B

Resource B

Resource A

Service B

Internal

behaviour A

Internal

behaviour B

Fig. 8.6. Example of a normalisation step.

The application (if needed), following such an algorithm, of the proper

rule for each edge in the input model will eventually lead to a normalised

model.
Fig. 8.7 shows the normalised version of the example model given in

Fig. 8.5. The input parameters for the workload on the ‘used by’ relations

are the same as in the original model. The service times are now trans-

ferred also to the inserted internal behaviour elements.
However, since model normalisation is not the primary focus of this ap-

proach we will not provide a formal description of the normalisation algo-

rithm, although such an algorithm was implemented in the quantitative
analysis prototype described in Sect. 10.5.

206 Architecture Analysis

Claim handling

process

Claim submisstion

process

search damage

reports

view damage

report

store damage

report

Report
scanning

application

search
component

view

component

database

query

store

document
retrieve

document

database

entry

Database

system

Document

management
system

Database
server

Document
server

document

access

data

access

Damage

expertAdministrator

Business

layer

Application

layer

Infrastructure

layer

dayf /600= dayf /200=

1=n 5.1=n 1=n

1=n
1=n

1=n

1=n

1=n 1=n

1=n 1=n

sS 5.0= sS 2= sS 8=

sS 5.0= sS 5.0=sS 5= sS 5=

sS 2.0=sS 6=

sS 5.0=

sS 5= sS 5=

sS 5.0=

sS 2.0=sS 6=

sS 8=sS 2=

sS 5.0=

Fig. 8.7. Normalised model.

Step 2: Top-Down Workload Calculation

Given a normalised model, we can now calculate the workload (i.e., arrival

rate) for any node a. The following recursive expression applies:

∑

+

=

+=

a

ii

d

i

kkaaa
nf

1

,
λλ ,

where
+

a
d denotes the out-degree of node a and ki is a child node of a. In

other words, the arrival rate for a node is determined by adding the re-

quests from higher layers to the local arrival frequency
a
f .

Quantitative Analysis 207

The results of this step in the ‘document management system’ example

are given in Table 8.1, which shows the workload for the services s in the

model, in terms of the arrival rates
s

λ . The arrival rates depend on the fre-

quencies of the customer input requests and the cardinalities n of the ‘used

by’ relations. The table also shows the scaled arrival rates expressed in ar-

rivals/second (assuming that systems are operational eight hours per day).

Table 8.1. Workloads and performance results.

Resource (r) Service (s))(1−
s

s
λ)(sT

s
)(sR

s

r
U

Doc. srv. Doc. acc. 0.0382 6.0 7.8 0.229

DB srv. Data acc. 0.0278 0.2 0.2 0.006

Doc.mgt.sys. Retr. doc. 0.0313 12.8 25.0 0.488

Doc.mgt.sys. Store doc. 0.0069 12.8 25.0 0.488

DB sys. DB query 0.0278 0.7 0.7 0.019

DB sys. DB entry 0.0069 0.7 0.7 0.019

Search comp. Search rep. 0.0278 1.2 1.2 0.025

View comp. View rep. 0.0313 27.0 174.0 0.843
Rep. scanning Store rep. 0.0069 33.7 44.0 0.234

Step 3: Bottom-Up Performance Calculation

Once the workloads imposed on the various model components are calcu-

lated, we can proceed with the last analysis phase, the bottom-up calcula-

tion of the aforementioned set of performance measures. The approach we
take is somewhat similar to the top-down one. In this step we focus on the

bottom-up propagation of values corresponding to different time-related

performance measures. The actual calculation can be done using the fol-
lowing recursive expressions:

− The utilisation of any resource r is

r

d

i

kk

r

C

T

U

r

ii
∑
=

=

1

λ

,

where
r

d is the number of internal behaviour elements
i
k to which the

resource is assigned.

− The processing time and response time of any service a coincide with

the processing time and response time of the internal behaviour element

realising it, i.e.,
ka

TT = and
ka

RR = , where ()ak , is the only realisa-

tion relation having a as end point.

208 Architecture Analysis

− The processing time and response time of any internal behaviour ele-

ment a can be computed using the following recursive equations:

 ∑

−

=

+=

a

ii

d

i

kakaa
RnST

1

,
 and),(

aa
raFR = ,

where
−

a
d denotes the in-degree of node a, ki is a parent of a,

a
r is the

resource assigned to a, and F is the response time expressed as a func-

tion of attributes of a and
a
r .

For example, if we assume that the node can be modelled as an M/M/1

queue (Harrison and Patel 1992), this function is

a
r

a

a

U

T
raF

−

=

1
),((1)

We can replace this by another equation in case other assumptions apply,
e.g., the Pollaczek–Khinchine formula for an M/G/1 if Ta has a non-expo-

nential distribution, or the solution for an M/M/n queue based on the Er-

lang C formula for a structural element with a capacity greater than 1
(Iacob and Jonkers 2005). We might also consider more global solutions,

e.g., operational performance bounds (Eager and Sevcik 1986). In case

more precise results are required, instead of simple queuing formulae,

more detailed techniques such as simulation can be applied in combination
with our approach.

Table 8.1 also shows the performance results for the example model af-

ter the execution of step 3. We have calculated the processing and response
times for the services and the utilisations for the resources at the applica-

tion and infrastructure layers (in this example, the business layer is only

relevant because it provides the input for the workloads). However, the
performance results can easily be extended to the business layer as well.

For simplicity, we assume Poisson arrivals and exponentially distributed

service times in this example, so that every structural element a can be

modelled as an M/M/1 queue (Harrison and Patel 1992). Hence, the re-

sponse time function is given by (1).

The results show that queuing times from the lower layers accumulate in
the higher layers, which results in response times that are orders of magni-

tude greater than the local service times. For example, the ‘view’ compo-

nent of the ‘claim handling support’ application has a utilisation of over
84%, which results in a response time of the ‘view damage report’ applica-

tion service of almost 3 minutes.

Using our approach, it is easy to study the effect of input parameter
changes on the performance. For example, Fig. 8.8 shows how the re-

sponse time of the View component depends on the arrival frequency as-

Functional Analysis 209

sociated with the Administrator (assuming a fixed arrival frequency for the

Damage expert). The maximum arrival frequency, which results in a utili-

sation of the View component of 100%, is 651 arrivals per day. In the de-
sign stage these results may help us to decide, for example, if an extra

View component is needed.

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700

R
(V

ie
w

 c
o

m
p

o
n

e
n

t)

f(Administrator)

Fig. 8.8. Arrival rate vs. response time.

8.3 Functional Analysis

In this section we illustrate how functional analysis techniques can be

based on existing techniques in formal methods. Though these formal
methods have been developed for systems and problems which have been

defined in a mathematically precise way, and architecture descriptions in

most cases have an informal character, we show that these formal methods

can be used when we introduce a few basic definitions we briefly ex-
plained in Chap. 3, such as signature, symbolic model, and interpretation.

In functional analysis of architectures, we distinguish between static or

structural and dynamic or behavioural aspects. For analysing the static
structure of an architecture, its signature (see Sect. 3.3) forms the basis.

This focuses on the symbolic representation of the structural elements of

an architecture and their relationships, abstracting from other architectural

aspects like rationale, pragmatics, and visualisation. It emphasises a sepa-
ration of concerns which helps in mastering the complexity of the archi-

tecture. Notably, the signature of an architecture can be expressed in XML

210 Architecture Analysis

for storage and communication purposes, and can be integrated as an inde-

pendent module with other tools including graphics for visualisation.

For the logical analysis of the dynamics of an architecture, the formal
semantics (see also Sect. 3.3) of a symbolic model of that architecture pro-

vides a formal basis. A signature of an architecture only specifies the basic

concepts with which the architecture is described, but an interpretation
contains much more detail. In general, there can be a large number of dif-

ferent interpretations for a signature. This reflects the intuition that there

are many possible architectures that fit a specific architecture description.

By applying the techniques for static and dynamic analysis discussed in
the next subsections, we gain a better understanding of how enterprise ar-

chitectures are to be interpreted and what is meant by the individual con-

cepts and relationships. In other words, these techniques allow enterprise
architects to validate the correctness of their architectures, to reduce the

possibility of misinterpretations, and even to enrich their architecture de-

scriptions with relevant information in a smooth and controllable way.
We do not detail the formal methods themselves, which would require at

least a textbook for each method (and many good textbooks for these

methods exist). Instead, we use small example architectures to illustrate

the use of these methods for architectural analysis. More technical details
can be found in de Boer et al. (2004, 2005) and in Stam et al. (2004).

The structure of this section is as follows. In Sect. 8.3.1 we give an in-

troduction to static analysis, in particular of impact-of-change analysis on
an architecture, and we show how this can be applied to the ArchiSurance

example case described earlier. In Sect. 8.3.2, we go deeper into dynamic

analysis. Using another example architecture, we show how an ArchiMate
description of an architecture can be translated into a signature, illustrate

how this signature can be extended to a symbolic model, and how this

symbolic model can be interpreted by a semantic model. We briefly de-

scribe two relevant formal methods, namely process algebras and data flow
models. Finally, we show how we can interpret the example architecture as

a process algebra and as a data flow network, respectively.

8.3.1 Static Analysis

For structural analysis of architectures, description logics are useful for-
malisms. Description logics are knowledge representation languages tai-

lored to express knowledge about concepts and concept hierarchies. They

are considered an important formalism unifying and giving a logical basis
to the well-known traditions of frame-based systems, semantic networks,

and KL-ONE-like languages (Woods et al. 1992), object-oriented repre-

Functional Analysis 211

sentations, semantic data models, and type systems. Description logic sys-

tems have been used for building a variety of applications including con-

ceptual modelling, information integration, query mechanisms, view main-
tenance, software management systems, planning systems, configuration

systems, and natural language understanding. In the case of enterprise ar-

chitecture, the main application of description logics is in determining the
impact of a change to an architecture: what elements of the model will be

‘touched’ by this change?

As an example of static analysis, we again consider our fictitious Archi-

Surance company, which offers insurance to customers. ArchiSurance sells
its products by means of intermediaries. Intermediaries investigate the

concerns of customers, negotiate a policy contract, and take care of the

administrative work and the communication with ArchiSurance (see also
Fig. 7.11, the Actor Cooperation view of ArchiSurance).

The role of the intermediary is purely commercial: he or she only sells

products to customers and makes sure all paperwork is done correctly until
the customer has signed a contract. After this, the intermediary is only in-

volved in case of problems with the collection of premiums.

ArchiSurance architects want to investigate quickly if it would be possi-

ble to eliminate the entire idea of intermediaries. What would be the con-
sequences of such a drastic change of the business model on the enterprise

architecture of ArchiSurance?

The starting point of this analysis is the relationship between the various
views and a logical theory. As we explained in Chap. 3, underlying these

views is a single architecture model, which corresponds to a signature,

which is used in the logical analysis.
In this signature there are sorts for roles, collaborations etc., and there

are domain-dependent sorts, such as ‘insurance company’ and ‘customer’.

Performing such a structural analysis implies ‘traversing’ the architecture

and taking into account each relation and its meaning to determine whether
the proposed change might ‘propagate’ through this relation. If, for exam-

ple, a service provided by an application changes, every user of that ser-

vice may be affected.
To express this, every relation in the architecture model is translated

into a relation in the logic. In the translation there are also some constraints

between the sorts and the relations to make the correspondence precise.

Examples of such constraints, expressed in first-order logic, are the fol-
lowing:

∀x: Customer(x) → Role(x)

∀x,y: Participate(x,y) → Role(x) /\ Collaboration(y)

212 Architecture Analysis

The first rule states that every Customer is also a Role; the second states

that only Roles can participate in Collaborations, and, vice versa, that par-

ticipants of Collaborations are Roles. Of course, much more complex rules
are used to express the impact of a change of a model element on related

elements. Such logic rules can be processed by a ‘rules engine’ that auto-

mates the impact analysis. A prototype of such an analysis tool is de-
scribed in Sect. 10.6.

In our example, if ArchiSurance wants to change the role of the inter-

mediary, this will have an impact on all collaborations in which this inter-

mediary participates (Fig. 8.9). Several business processes will be involved
in this through interactions performed by these collaborations; one of these

is the ‘Close Contract’ process, shown in Fig. 8.10. This uses a number of

applications, some of which may also be influenced by the change (Fig.
8.11). Naturally, these examples show only a small part of the actual im-

pact of the proposed change, but they serve to illustrate the general idea.

In these examples, we have not shown how an architecture description
in the ArchiMate language can be translated into an underlying formalism

that forms the basis of these analysis techniques. In the next subsection, on

dynamic analysis, we will go deeper into this issue, and show how the sig-

nature of an architecture can be defined, how this signature can be inter-
preted semantically, and how formal analysis techniques can be built upon

that.

Intermediary

Customer Insurer

Contracting
Prem ium

Col lection

Claim

Fulfilment

Customer’s
Bank

Negotiation

ArchiSurance

Fig. 8.9. Impact (in red) on collaborations.

Functional Analysis 213

 Close Contract

Create

contract

Register

policy

Request for

insurance

Formalise

request

Check

and sign

contract

Customer InsurerContractingNegotiation Intermediary

Fig. 8.10. Impact (in red) on 'Close Contract' business process.

Home & Away

Policy
administration

CRM

application

Customer

administration
service

Policy

creation
service

 Close Contract

Create
contract

Register
pol icy

Formalise
request

Check

and sign
contract

Policy

registration
service

Printing
service

Scanning
service

Document
management

system

Fig. 8.11. Impact (in red) on applications.

8.3.2 Dynamic Analysis

For dynamic analysis of architectures, functional analysis techniques based
on formal approaches such as process algebras and data flow networks are

useful. Issues like two roles acting at the same time, overwriting or de-

stroying each other’s work, can be identified and then a suitable protocol
can be designed to prevent the problem. Thus, a functional behaviour

analysis based on formal methods is primarily a qualitative analysis that

can detect logical errors, leads to a better consistency, and focuses on the

logic of models.
The dynamics of a concrete system with an architecture description

given by its signature can be specified in different ways; we distinguish

between specifications tailored towards control flow modelling and those
tailored towards data flow modelling. For control flow modelling, we give

214 Architecture Analysis

a brief introduction to process algebra, while for data flow modelling, we

introduce the reader to data flow networks.

To illustrate the use of these formal methods, we use the enterprise ar-
chitecture of a small company, ArchiSell, modelled using the ArchiMate

language. In ArchiSell, employees sell products to customers. Various

suppliers deliver the products to ArchiSell. Employees of ArchiSell are re-
sponsible for ordering products and for selling them. Once products are de-

livered to ArchiSell, each product is assigned to an owner responsible for

selling the product. More specifically, we look at the business process ar-

chitecture for ordering products, visualised in Fig. 8.12. To describe this
enterprise we use the ArchiMate modelling concepts and their relation-

ships. In particular, we use structural concepts (product, role, and object)

and structural relationships (association), but also behavioural concepts
(process) and behavioural relationships (triggering). Behavioural and

structural concepts are connected by means of the assignment and access

relations.

Employee

Accept product

Register

product

acceptance

Place order for

product

Register order

placement

Order

Registry

Product

Registry

owns

Product

Fig. 8.12. ArchiSell: a business process architecture.

In order to fulfil the business process for ordering a product, the em-

ployee has to perform the following activities:

− Before placing an order, an employee must register the order within the

Order Registry. This Order Registry is for administration purposes. It is
used to check orders upon acceptance of goods later in the process. Or-

ders contain a list of products to be ordered.

− After that, the employee places the order with the supplier. Based on the

order, the supplier is supposed to collect the products and to deliver
them as soon as possible.

Functional Analysis 215

− As soon as the supplier delivers the products, the employee first checks

if there is an order that refers to this delivery. Then, the employee ac-

cepts the products.

− Next, the employee registers the acceptance of the products within the

Product Registry and determines which employee will be the owner of
the products.

Although the example is rather trivial, it serves to illustrate how an archi-

tecture description can be formalised and how it can be subjected to func-
tional analysis.

Signature

We first define the signature of the business process architecture described

in Fig. 8.12. The sorts of the example are simply enumerated as follows:

Role

Object

Employee
Product

product

Order_Registry

Product_Registry

Note that we did not include processes as a sort, because processes are

modelled below as functions.

Further information about the architecture is expressed symbolically in

terms of suitable extensions of one of its signatures. Usually, a signature is

extended with operations for constructing complex types from the primi-

tive sorts. Examples are the standard type operations like the product type

T1×T2 of the types T1 and T2, and the function type T1→T2 of all functions

which require an argument of type T1 and provide a result of type T2.

Given functional types, the name space of a signature can be extended with

functions F(T1) : T2, where F specifies the name of a function of type

T1→T2. Functions can be used to specify the attributes of a sort. For exam-

ple, given the primitive sorts Employee and Ν, the function

Age(Employee) : Ν is intended for specifying the age of each person. Ex-

amples of the sub-sort relation are the following:

Employee is_a Role
Product is_a product

Order_Registry is_a Object

Product_Registry is_a Object
Owns is_a association

216 Architecture Analysis

Note that we have encoded meta-model information of an architecture de-

scription as part of the signature of the architecture itself. The relation be-

tween the meta-model sorts and relations and architecture sorts and re-
lations is expressed by the respective partial orders between sorts and rela-

tions of the signature. For example, the sort Product in Fig. 8.12 is mod-

elled as a sub-sort of the ArchiMate concept product. The ‘owns’ relation
itself is specified by:

Employee owns Product

Also note that the triggering relation is not included in our concept of a

signature. In our view such a relation specifies a temporal ordering be-
tween the processes, which are described in Sects. 10.1.3 and 10.1.4.

Interpretation

To obtain a formal model of a system as a semantic interpretation of the

symbolic model of its architecture description, we start with an interpreta-

tion of the signature. An interpretation I of the types of a signature as-

signs to each primitive sort S a set I(S) of individuals of sort S which re-

spects the sub-sort ordering: if S1 is a sub-sort of S2 then I(S1) is a subset of

I(S2). Any primitive sort is interpreted by a subset of a universe which is

given by the union of the interpretation of all primitive sorts. The subset

relation expresses the hierarchy between primitive sorts. An interpretation

I of the primitive sorts of a signature of an architecture can be inductively

extended to an interpretation of more complex types. For example, an in-

terpretation of the product type T1×T2 is given by the Cartesian product

I(T1)× I(T2) of the sets I(T1) and I(T2). The function type T1→T2 thus de-

notes the set of all functions from the universe to itself such that the image

of I(T1) is contained in I(T2). In general, there can be a large number of dif-

ferent interpretations for a signature. This reflects the intuition that there

are many possible architectures that fit a specific architecture description.

The semantic model of a system involves its concrete components and

their concrete relationships, which may change in time because of the dy-

namic behaviour of a system. To refer to the concrete situation of a system,

we have to extend its signature with names for referring to the individuals

of the types and relations. For a symbolic model, we denote by n:T a name

n , which ranges over individuals of type T.
As an example, we introduce the following semantic model. We define

only two products: p1 and p2. In order to model the processing of orders

and products, individuals of the sort Employee have a product attribute and

an order attribute. These attributes indicate the order and product the em-

Functional Analysis 217

ployee is managing. In our model, individuals of the sort Employee are

fully characterised by these attributes. Therefore in our model the sort Em-

ployee contains four elements, namely:

e1 order = p1 product = p1

e2 order = p1 product = p2

e3 order = p2 product = p1
e4 order = p2 product = p2

Furthermore, we define the order and product registries as possibly infinite

lists of products.

Finally, in order to refer to the elements of the different sorts we intro-
duce individual names emp: Employee, order-reg: Order_Registry, and

product-reg: Product_Registry. A semantic model assigns individuals to

these names. For example:

emp = e1 order = p1 product = p1

order-reg = { p1}

product-reg = { p2}

Note that this assignment describes an employee, who manages an order of

product p1 and a delivery of product p1, an Order_registry, which registers

an order of product p1, and a Product_registry, which registers the ac-

ceptance of a product p2.

Process Algebras

Process algebra (Baeten and Weijland 1990, Bergstra et al. 2001) is a for-

mal description technique for specifying the control flow behaviour of
complex systems. Starting from the language syntax, each statement of the

language is supplied with some kind of behaviour, and a semantic equiva-

lence says which behaviours are identical. Process algebras express such

equivalences in axioms or equational laws. The axioms are to be sound,
i.e., if two behaviours can be equated then they are semantically equiva-

lent. The converse statement is optional, and is called completeness, i.e., if

two behaviours are semantically equivalent then they can be equated.

The system is captured as a set of processes interacting with each other

according to predefined rules. Starting from a set of basic actions, proc-

esses may be hierarchically composed by means of operators, e.g., se-

quential composition, choice, parallel composition.

We derive these basic actions from the functions of a symbolic model of

an architecture. To this end, we define the action of a function F(S) : T by

an assignment of the form n := F(m) where n : T and m : S are names rang-

ing over the types T and S, respectively. The execution of such an action in

218 Architecture Analysis

a semantic model Σ assigns to the name n the return value of Σ(F)(Σ(m))

which denotes the result of applying the function Σ(F) ∈ I(S→T) to the

element Σ(m) ∈ I(S). Note that actions transform semantic models (i.e., the

state of a system) but not the interpretation of a signature (i.e., the struc-

tural information of a system).

Given this concept of an action as a transformation of semantic models,

we can define more complex processes by combining actions; that is, we

can define operations on actions determining the order of their execution.

For example, we can define the sequential composition

n := F(m); n' := G(m') of two actions n := F(m) and n' := G(m') as the

composition of their transformation of semantic models.

Process algebras can be applied to model any business function and to

prove its correctness. They enable properties of the business of an enter-

prise to be expressed in an abstract way and to deduce whether a specific

process satisfies these properties.

Now let us consider the process steps within the ArchiSell example.

Within the process algebra interpretation, processes are specified as func-

tions. The types of the arguments and result values are determined as fol-

lows:

− A role, which is assigned to a process, specifies the type of both an ar-

gument and a result value of the corresponding function.

− An outgoing access relation from a process to a data object specifies the

type of both an argument and a result value of the corresponding func-

tion.

− An incoming access relation from an object to a process only specifies

the type of the corresponding argument (this captures the property of

‘read-only’).

This results in the following functions:

− Register_order_placement

• domain name=Employee

• domain name=Order_Registry

• codomain name=Employee

• codomain name=Order_Registry

− Place_order_for_product

• domain name=Employee

• codomain name=Employee

− Accept_product

• domain name=Employee

Functional Analysis 219

• domain name=Order_Registry

• codomain name=Employee

− Register_product_acceptance

• domain name=Employee

• domain name=Product_Registry

• codomain name=Employee

• codomain name=Product_Registry

The interpretation of the processes can be specified in a pseudo-language.

For more simple functions, matrices of input/output pairs can be given. For

example, the interpretation of the Register_order_placement function can
be as follows: add to the Order_Registry (which is a list, as defined in the

signature) the product of the product attribute of the Employee. Other

processes are formally described in a similar manner.
Within a process algebra, we now can concatenate the individual func-

tions in order to model the transformation of an initial state of a concrete

system to an eventual state. In this way, we can reason about the correct-
ness of the transformation.

Data Flow Networks

A data flow network (Jagannathan 1995) is another formal description

technique for the behavioural specifications of complex systems. Such a
network consists of some processes, the functions of a symbolic model

that communicate by passing data over lines. A process is a transformation

of data within the system, whereas a line is a directed FIFO channel con-

necting at most two processes. Data passed over a line by a process will ar-
rive in an unspecified but finite amount of time at the destination process

in the same order as it was sent.

Data flow diagrams can be used to provide a clear representation of any
business function. The technique starts with an overall picture of the busi-

ness and continues by analysing each of the functional areas of interest.

This analysis can be carried out to the level of detail required. The tech-
nique exploits a method called top-down expansion to conduct the analysis

in a targeted way. The result is a series of diagrams that represent the busi-

ness activities in a way that is precise, clear, and easy to communicate.

In a data flow interpretation of the ArchiSell process, we consider each
individual process step as an independent data-consuming/data-producing

entity. Such an entity has input ports and output ports. Within the data

flow interpretation we are interested in the data flow within the process,
but not directly in the actors (or roles) that perform the process. Therefore,

this interpretation is specifically suited for situations in which many details

220 Architecture Analysis

are known about the data and less about the actors. However, as we will il-

lustrate, a data flow interpretation can help us in the assignment of actors

to process steps.
The way in which we can interpret the example as a data flow network

is shown in Fig. 8.13. Note the following:

− We leave out any information about roles and individuals within the role

sort. So, the data flow diagram does not contain information about
which actor performs which process steps.

− We specify registries as stores, i.e., special functions, which resemble

places in which information can be stored and from which the same in-

formation can be retrieved later.

− We explicitly identify which input/output ports receive/send which kind

of values. A practical way is to begin with identifying the values on the

input/output ports, and then to connect the output ports to other input

ports.

Register order

placement

Place order

for product

2
Accept

product

Register

product

acceptance

4 5

3 7

8 9

6

10

12 13 11

1

OR PR

 Fig. 8.13. ArchiSell as a data flow network.

The following values are communicated:

1. list of products that have to be ordered;
2. list of products that have to be ordered;

3. order registry record;

4. list of products that have to be ordered;
5. supplier order;

6. list of products received;

7. order registry record;

8. list of products accepted;
9. list of products accepted;

10. product registry record;

11. product registry record;
12. order registry record;

13. order registry record.

Summary 221

With such a data flow diagram, we can define data flow for each individ-

ual process step. The functions transform certain inputs into a certain out-

put. Such functions can be defined in, for example, a pseudo-language, but
it is also possible to derive a working simulation of the process architec-

ture in this way.

The data flow diagram also enables us to reason about the assignment of
process steps to actors. For example, the process diagram, correct as it is,

does not reveal if the step ‘register order placement’ should be fulfilled by

the same actor as the step ‘accept product’. The data flow diagram reveals

what is needed in order to assign actors correctly to process steps.
An example of this is the following. Suppose that we would like to have

the first two process steps to be performed by an actor different from the

one that performs the last two process steps. The data flow diagram reveals
that this is no problem, since no values are communicated directly between

those two sets of process steps. In other words, the data flow diagram

shows that, given this interpretation of the process architecture, it facili-
tates separation between order placement and product acceptance.

8.4 Summary

In this chapter we have considered the relation between enterprise archi-

tecture models and architecture analysis. We addressed two main classes
of methods, quantitative analysis and functional analysis.

Although the importance of enterprise architecture modelling has been

recognised, hardly any attention has been paid to the analysis of its quanti-
tative properties. Most existing approaches to performance evaluation fo-

cus on detailed models within a specific domain. We demonstrated the ap-

plicability of quantitative modelling and analysis techniques for the
effective evaluation of design choices at the enterprise architectures level,

in the context of ArchiMate models. We discerned a number of architec-

ture viewpoints with corresponding performance measures, which can be

used as criteria for the optimisation or comparison of such designs. We in-
troduced a new approach for the propagation of workload and performance

measures through a layered enterprise architecture model. This can be used

as an analysis framework where existing methods for detailed performance
analysis, based on, for example, queuing models, Petri nets or simulation,

can be plugged in. The presented example illustrates the use of our top-

down and bottom-up technique to evaluate the performance of a document
management system for the storage and retrieval of damage reports. Using

a simple queuing formula for the response times, we showed that queuing

times from the lower layers of the architecture accumulate in the higher

222 Architecture Analysis

layers, which may result in response times that are orders of magnitude

greater than the local service times. In order further to illustrate and vali-

date our approach, we have developed a prototype, which is outlined in
Chap. 10. The practical use of these techniques is illustrated in a case study

of the Dutch Tax and Customs Administration, which is described in Chap.

11.
By applying functional analysis techniques, we aim for a better under-

standing of how architectures are to be interpreted. These techniques allow

enterprise architects to validate the correctness of their architectures, to re-

duce the possibility of misinterpretations, and to enrich their architecture
descriptions with relevant information in a smooth and controllable way.

In functional analysis, we distinguished between static or structural and

dynamic or behavioural aspects. Furthermore, our approach is based on the
distinction between symbolic and semantic models of architectures. The

core of a symbolic model consists of its signature that specifies symboli-

cally its structural elements and their relationships. A semantic model is
defined as a formal interpretation of the symbolic model. Semantic models

are at the centre of our logical perspective of enterprise architectures,

which integrates both static and dynamic aspects. This leads to more pre-

cise characterisation of the architecture concepts and provides a formal ba-
sis for functional analysis. The framework we have developed allows the

integration of various techniques, ranging from static analysis to process

algebras and data-flow networks. One important application of these tech-
niques is impact-of-change analysis, a prototype of which will be de-

scribed in Chap. 10.

As we have seen, both quantitative and functional analysis techniques
help the architect in creating a better insight into the complexities of an en-

terprise architecture. For further integration into the architecture design

process, combining quantitative and functional analysis (e.g., impact-of-

change analysis based on quantitative results) could be fruitful.

9 Architecture Alignment

As we have described in Chap. 1, achieving alignment between business
and IT is one of the most important drivers for architecture. Architecture

alignment is the problem of designing architectures at the infrastructure,

application, and business levels such that each fits optimally with the other
architectures. By studying project documentation obtained in case studies

in several large Dutch organisations, we have tried to find alignment pat-

terns that are actually used in practice. These results provide the context in

which architectures are designed. Insight into this context helps the reader
in better applying the techniques presented in this book.

9.1 Introduction

The results presented in this chapter stem from the GRAAL project,6 a
daughter project of ArchiMate. In this project, we investigate Guidelines

Regarding Architecture ALignment. The Dutch word ‘GRAAL’ means

‘grail’, and sometimes during the project we felt like valiant knights in
search of the holy grail of architecture alignment. This goal turned out to

be very elusive indeed.

We have used case studies in large organisations in the public and fi-

nance sectors in the search for this grail. All organisations studied by us
were actively seeking to align their IT (information technology and related

technology) architecture with their business architecture. But the dynamics

of current organisations are such that perfect alignment is never attained.
There are too many changes in technology, business processes, organisa-

tion structure, and the business environment to make that happen. Align-

ment is thus a regulating idea, like a Kantian goal that is always hovering

over the horizon wherever we are. It directs our decisions but it is never
fully reached.

Our goal is to derive operational guidelines for aligning IT architecture

with business architecture. At the time of writing, we have performed six
case studies in various organisations. The idea at the start of the project

6
 http://is.cs.utwente.nl/GRAAL

224 Architecture Alignment

was to derive guidelines in the form of patterns of well-aligned software

applications that occur in different organisations. It turned out that there

are very few such patterns: we found exactly one. We did, however, learn
many interesting and useful things about recurrent problems in achieving

alignment, about ways to structure the problem, and about methods to

achieve alignment (see also van Eck et al. 2004). Our case studies also
showed us that organisations are not so much in need of a library of pat-

terns. The two major unsolved problems we encountered are how to gov-

ern the alignment process (the governance problem) and how to communi-

cate architecture (the documentation problem). We return to these research
questions at the end of this chapter.

The structure of this chapter is as follows. In Sect. 9.2, we discuss our

architecture framework. In Sect. 9.3 we then summarise our observations
and conclusions from six case studies about architecture alignment, and in

Sect. 9.4 we present observations about the architecture process.

9.2 The GRAAL Alignment Framework

In order to be able to do a comparative analysis, we need a conceptual

framework that allows us to describe in a uniform manner any alignment

phenomena we find in different organisations. Our framework is based on

an earlier analysis of similar frameworks in systems engineering (Hall
1962, 1969), industrial product engineering (Pahl and Beitz 1986, Roozen-

burg and Eekels 1995), and software engineering (Wieringa 1998b). The

first version of our framework was published in 1996 (Wieringa 1996). It
was further elaborated in later publications (Wieringa 1998a), and the cur-

rent version was published as first result of the GRAAL project (Wieringa

et al. 2003).
A conceptual framework is a collection of concepts and relations among

them that can be used to describe phenomena. After almost ten years of us-

ing the framework in describing IT architectures, the framework is now

reduced to four simple dimensions.

− System aspects: externally observable properties.

− System aggregation: the composition of complex systems from simpler

systems.

− Systems process: the life of a system from creation to disposal.

− Description levels: refinement.

The first three dimensions cover three possible ways of considering a sys-

tem: by its externally observable properties, by its internal structure, and

The GRAAL Alignment Framework 225

by the phases in its life. The fourth dimension concerns the level of detail

we include in our system descriptions. In the next sections, we explain

these dimensions and the way in which they can be combined.

9.2.1 System Aspects

The starting point for the GRAAL framework is that we consider systems,

where a system is a coherent set of elements, whose coherence produces an

added value for its environment (Blanchard and Fabrycky 1990, Hall
1962). Organisations are systems, houses are systems, and software pro-

grams are systems. We have borrowed the distinction made in general sys-

tems theory between aspect systems and subsystems. Given that each sys-
tem consists of a set of elements, we can define two abstraction operations

when we consider a system. An aspect system is the set of all of these ele-

ments, with only some of their properties, and a subsystem is a subset of
these elements, but with all their properties. We can reduce the complexity

of a system model by focusing on an aspect system or by ignoring subsys-

tems. These are the first two dimensions of the GRAAL framework.

An analysis of a large number of software design techniques has re-
sulted in a simple classification of relevant software aspects, shown in Fig.

9.1 (Wieringa 1998b). A system offers services to its environment; quality

properties characterise the value that the system provides for stakeholders
by the services it offers. For example, usability, efficiency, and security are

aspects of the value that system services have for users of the system, and

maintainability and portability are aspects of the value of the system for
developers.

System aspects

Services Quality

Behaviour Communication Meaning For user For developer

Usability Efficiency Security Maintainability Portability… …

Fig. 9.1. System aspects.

A system exists to deliver certain services to its environment. System

services in turn are characterised by three functional properties. The be-
haviour aspect consists of the ordering over time of services and the func-

tions that realise them. The communication aspect consists of the in-

teractions with other entities (people, devices, businesses, software) during

226 Architecture Alignment

the delivery of the service, and the semantic aspect consists of the meaning

of the symbols exchanged during the service. These aspects can all be de-

scribed in the ArchiMate language, as we have outlined in Chap. 5.
The ‘meaning’ aspect is the only aspect typical of information systems.

Other kinds of systems deliver services by means of physical processes

such as the exchange of heat or electricity, which do not have a meaning.
Software systems deliver services by exchanging symbols with their envi-

ronment, and these have a meaning (usually documented in a dictionary).

9.2.2 The Aggregation Hierarchy

Next to focusing on one system aspect, ignoring subsystems is a major ab-
straction operation. Every system can be placed in an aggregation hierar-

chy. In the GRAAL framework, the system aspects can be observed at

each level of the aggregation hierarchy (Fig. 9.2).

Composite

system

System

Component

External

entity

External

entity

service

behaviour

communication

meaning

quality

service

behaviour

communication

meaning

quality

service

behaviour

communication

meaning

quality

service

behaviour

communication

meaning

quality

service

behaviour

communication

meaning

quality

… …

Fig. 9.2. Repetition of aspects at all levels of an aggregation hierarchy.

When we study IT architecture alignment, this simple picture becomes

more complicated because there are different kinds of aggregation. Infor-

mation system architects must deal with three different aggregation hierar-
chies, namely the physical, social, and linguistic hierarchies. The physical

world is the world of brick, mortar, plastic, metal, and other things that can

drop on the ground. More in general, it consists of all entities and pro-

cesses that can be described using the physical measures of metres, kilo-
grams, amperes, and seconds. Relevant for the IT architect is that the

physical world includes computers, printers, wires, glass fibre, wireless ac-

cess points, radio waves, etc. The social world is the world of business

The GRAAL Alignment Framework 227

processes, needs, added value, money, norms, laws, etc. Part of the social

world is the linguistic world of symbol manipulation. We treat this sepa-

rately because it is the world of software and documents. Note that soft-
ware exists only in the linguistic world; computers exist only in the physi-

cal world; and people exist in all three worlds.

In the physical world, aggregation seems to be a relationship between
smaller things that are contained in bigger things. In the three-dimensional

world of physical things, this often amounts to a physical containment re-

lationship. But what is aggregation in the social world? There are no big or

small things in the social world, and physical containment does not exist in
the social world. What does it mean to say that a department is part of an

organisation? The department and the organisation have no physical place

and size and if we say that one is contained in the other, then this is a
metaphorical use of the verb ‘to contain’. A similar problem exists in the

world of software. What does it mean to say that a module is contained in

a program, if this module may exist in several fragments in several physi-
cal places (on disk, in memory, in a cache) and may be used by several

programs?

Rethinking the concept of aggregation, we identify the following two

characteristic features (Wieringa 2003, p. 234). Consider a component C of
an aggregate A. To say that C is a component of A means the following:

− Service provisioning: C provides a service to A. In other words, C

plays a role in the realisation of the services of A itself.

− Encapsulation: An external entity, i.e., an entity that is not a compo-

nent of A, can only interact with C through the interface of A. In the
physical world, this means that A provides a protective cover for C. In

the social world, this means that C is ‘owned’ by A, so that an interac-

tion with C is always also an interaction with A. In the symbolic world
of software, this means that an interaction with C requires interaction

with the interface offered by A to its environment.

The aggregation hierarchies in these three worlds are independent. For ex-

ample, if we observe that a software system is composed of subsystems,
modules, components, etc., then this hierarchy can be mapped in any pos-

sible way to a physical hierarchy consisting of a computer network, com-

puters and backup systems. The design problem is to find the most suitable
way given some measure of suitability. This means that there are really

three alignment problems, as suggested by Fig. 9.3.

228 Architecture Alignment

Physical

world

Social

world

Symbolic

world

Fig. 9.3. Three alignment problems.

Each of the three worlds in Fig. 9.3 has its own aggregation hierarchy,

and each must be aligned to the other two.

− To align software (in the symbolic world) to people (in the social

world), we must ensure that the meaning attached by people to the sym-
bols at the software interface agree with the manipulations of these

symbols by the software, and that these manipulations have value for the

people. To align software (symbolic) to business processes (social), we

must align the services offered by the software to the services needed by
these processes.

− To align software to the physical world, we must allocate it to process-

ing devices, which have a location in the physical world. In general, this

is a many-to-many mapping.

− To align the physical world to the social world, we must consider the

physical location where software is running, and align this with the

physical location where a business process service is needed.

None of these alignment problems is trivial.

9.2.3 The System Process

The third dimension of the GRAAL framework consists of the stages that a

system goes through in its life, from conception to creation, use, and dis-

posal (Fig. 9.4). We can abstract from the complexity of real life by con-
sidering each system in its current stage only. However, in all the cases we

studied, an important part of the alignment problem was the coordination

of future development of IT systems. This problem is sometimes compli-
cated because, for every system, several versions may exist. Because many

systems are supplied by third parties, each with their own release fre-

quency, coordinating the successive versions that all systems go to is a ma-

jor problem in practice. The process dimension of the GRAAL framework
draws attention to this.

The GRAAL Alignment Framework 229

Conception

Acquisition

(build or buy) Usage

Maintenance

Disposal

Fig. 9.4. Typical stages in the life of a system.

9.2.4 Refinement Levels

The fourth and last dimension of the GRAAL framework is not a system
dimension but a description dimension. It classifies the level of detail at

which we describe systems. Some illustrative refinement levels in the three

worlds are shown in Fig. 9.5.

Social

Symbolic

Physical

Market

distribution channel

strategy

System mission

infrastructure standard

Geographic areas

Abstract

(few details)

Refined

(many details)

Event,

communication channel,

stimuli,

business transaction

System transaction,

software library

Network topology,

machines

Fig. 9.5. Refinement relations.

9.2.5 Comparison with Other Frameworks

Zachman distinguishes three kinds of descriptions, the data, process, and

network description (Sowa and Zachman 1992, Zachman 1987), which
correspond, roughly, to our meaning, behaviour, and communication as-

pects. These descriptions can be used according to Zachman to describe

the system from a great number of perspectives, namely the scope of the

system, the business view, the system model, the technology model, the
component model, people, external business events, and business goals.

This seemingly unrelated and arbitrary list of perspectives can be systema-

tised by placing them at various levels in the service provision hierarchy
and refinement hierarchy of the GRAAL framework figure. Details of this

230 Architecture Alignment

and other comparisons can be found elsewhere (Wieringa 1996, pp. 329–

330, Wieringa 1998b).

Our framework refines the alignment framework of Henderson and
Venkatraman (Henderson and Venkatraman 1992, van Eck et al. 2004),

which is also described in Chap. 1. They distinguish two dimensions, the

service provision dimension (IT infrastructure level and business level)
and a refinement dimension (strategic and operational levels).

Most frameworks for software system development distinguish three

views, namely the function view, the behavioural view, and the data view

of the system (e.g., Olle et al. 1988). These views correspond to our ser-
vice, behaviour, and meaning aspects. Harel and Pnueli (1985) add to this

the aggregation dimension, which corresponds to our composition dimen-

sion.
Kruchten’s 4+1 model (Kruchten 1995), described in Sect. 7.1.3, defines

the logical and process views of a software system, which correspond

roughly with our aggregation dimension and behaviour view, respectively.
His physical and development view correspond roughly to the infrastruc-

ture layer (see our next section) and to our system process dimension, re-

spectively.

The two basic abstraction operations of focusing on aspect systems and
focusing on a subsystem correspond to the two semantic data modelling

operations of generalisation (reducing the number of aspects considered)

and aggregation (considering an overall system), introduced by Smith and
Smith (1977). This seems to have been a case of reinvention, for Smith and

Smith do not refer to the systems literature where this distinction origi-

nated.

9.3 Alignment Phenomena

In the various case studies we have carried out, we have attempted to iden-

tify general alignment phenomena. In the next subsections, we present our

observations. We formulate a number of propositions that try to generalise
from these observations.

9.3.1 Service Provisioning Layers

All cases studied by us use a layered architecture that distinguishes at least
software applications from software infrastructure. Our generalisation of

the many different examples that we saw is shown in Fig. 9.6. Each layer

in this figure contains systems, represented by the rectangle at each layer,

Alignment Phenomena 231

that are part of an aggregation hierarchy. Each of these systems has inter-

nal components and may be part of a bigger system. The physical layer

contains buildings, computers, printers, wires, wireless access points, etc.
The infrastructure layer contains operating systems, middleware, database

management systems, etc. The business system layer contains applications

and information systems dedicated to particular business processes. The
business contains the people, departments, and processes that make up the

business, and the business environment consists of suppliers, consumers,

and other actors the business interacts with. These layers are a further re-

finement of the business, application, and technology layers of the Archi-
Mate language, as described in Chap. 5 and shown on the right of the fig-

ure.

Conception

Acquisition

Usage & maintenance

Disposal

Service Behaviour Communication Meaning Quality

System lifecycle

Aspects

Service

provision

Business environment

Business

Business systems

(special purpose)

Software infrastructure

(general purpose)

Physical infrastructure

Business

Application

Technology

Fig. 9.6. Layered architectures.

Systems at each layer provide services to systems at higher layers (see

also Sect. 5.2, Fig. 5.2). They may directly interact with systems at any

higher layer. The layering only represents one service provisioning rela-
tionship, which is primarily because the systems at each level exist in order

to satisfy this relationship. There is also a secondary service provisioning

relationship that implements system management. For example, some peo-
ple in the business provide services to the infrastructure, because they keep

this infrastructure running and repair it when it is broken. This secondary

service provisioning relationship is not represented in the figure.

232 Architecture Alignment

Layering is of course the basic architectural structuring technique

(Dijkstra 1968, Buschmann et al. 1996). In Sect. 9.2.2 we saw that service

provisioning is one of the two elements in the concept of aggregation. A
component is encapsulated by its aggregate, and delivers a service to it.

When we drop the concept of encapsulation from the concept of aggrega-

tion, we get the concept of layering. So if we allow a component to be used
by several systems, none of which is a unique ‘owner’ of the component,

then the component in effect moves to a lower layer in a layered architec-

ture, and all systems that use it are located at some higher layer.

In Fig. 9.6, we see that at each layer, systems have the same aspects.
Each system at any layer provides services, has behaviour, and, above the

physical level, communicates with other systems by exchanging symbols

with a meaning. And each system has certain quality properties.
Finally, each system at any layer has a life that starts with conception

and ends with disposal. Some organisations studied by us maintained

elaborate documentation of systems at different stages of their life. Often,
organisations have difficulty managing this documentation and keeping it

mutually consistent.

The fourth dimension of the GRAAL framework, the abstraction level

of system descriptions, is not represented in Fig. 9.6. This figure gives a
three-dimensional classification of system views, which we used in all our

case studies. The success in using this framework to analyse IT architec-

tures in different organisations leads us to our first proposition:

Proposition 1. All organisations exhibit the layered architecture of

Fig. 9.6.

We now look closer at the infrastructure and business system layers.

9.3.2 Infrastructure Architecture

Infrastructure is the set of systems that should be available for use by all

users whenever they need it. In GRAAL, we are interested in the software

infrastructure of a business, but a large part of infrastructure is physical. It

consists of the electricity network, telecommunication networks, the water
provision network, the sewage disposal network, the central heating net-

work, the network of roads, the rail network, broadcasting networks and

other widely available service networks that provide services for the gen-
eral public. Most of these networks were introduced in the twentieth cen-

tury. Software infrastructures are just the latest addition to this set of infra-

structures.

Alignment Phenomena 233

Because infrastructures provide services to a large heterogeneous set of

user groups, they often have a network nature that allow users to use the

services wherever they are in physical space. The software infrastructures
that we found are no exception to this. They are usually partitioned into

domains that have a rough layered structure, which partitions the infra-

structure layer of Fig. 9.6; Fig. 9.7 shows a typical partitioning of the soft-
ware infrastructure into domains. It also shows some physical infrastruc-

ture domains relevant for IT.

Human

interaction

device

Processor Storage Network

Operating system Network software

Application

server

Database

management

system

Connectivity
Directory

services

Integration middleware

Web

infrastructure

components

Contact

centre

Application

components

Personal

productivity

collaboration

Business

intelligence

Application

development

Security

framework

Enterprise

systems

management

framework

Software

infrastructure

Physical

infrastructure

Fig. 9.7. A typical set of infrastructure domains.

Each domain is a knowledge area; it is not a system, but a type of sys-
tem. Experts in one domain are expert in this kind of system. They follow

the trade press, follow trends in the technology market of that domain, and

understand the offers made by technology vendors in that domain.
The hierarchy of domains in Fig. 9.7 represents a hierarchy of service

provisioning levels to the user of the infrastructure. Software at higher lev-

els uses services of software of lower levels, and so for higher-level soft-

ware, the lower levels jointly form an implementation platform. At the
same time, each higher level of software offers services with a semantics

closer to the business concerns of the end user. At the highest level, per-

sonal productivity software (e.g., word processors, e-mail client) and busi-
ness intelligence software (e.g., decision support tools) offer services that

can be defined in terms of the concerns of the end user.

234 Architecture Alignment

Infrastructure components can be classified according to the size of the

set of processes that they support and the speed at which their services

change.

Proposition 2. In general, the slower an infrastructure component’s

services change, the larger its set of users and vice versa.

The reason is that slow change allows a larger set of users to learn to use

the infrastructure component, and the larger its user base, the more diffi-
cult it is to change anything in the component. Weill and Vitale (2002)

classify infrastructure components according to scope and speed of

change. At the lowest level of change, and the largest scope of users, we
find commodities such as operating systems and certain user interface

hardware such as credit card swipers. On top of that, we find stable ser-

vices such as database management systems and workflow management
systems. At the next higher level we find standardised applications such as

HRM applications, accounting applications, and other components that

might be included in an ERP system. We see this hierarchy roughly illus-

trated in the example infrastructure domains of Fig. 9.7.
An infrastructure architecture consists of a partitioning of the infra-

structure into a set of domains, such as in Fig. 9.7, plus a set of company-

wide standards for each infrastructure domain. A standard might be a de
jure or de facto standard, or a selection of one or two vendors of software

in one domain, company-specific agreements, branch-specific agreements,

agreements with customers or suppliers, etc. In the companies we investi-

gated, the infrastructure software is never built but bought.

Infrastructure

procurement

decision

Business goals

Business problems

Legacy systems

Technology trends

Fig. 9.8. Infrastructure drivers.

Procurement decisions for infrastructure software are driven by four

sources, as shown in Fig. 9.8. Business goals may lead to certain infra-

structure decisions. For example, the business goal to facilitate location-
independent work can be supported by the installation of wireless net-

works, groupware infrastructure, and standard browser interfaces acces-

sible from anywhere. Business problems may lead to yet other decisions,
such as the installation of more storage servers to solve performance prob-

lems, or the move to another network software supplier to solve problems

Alignment Phenomena 235

with maintenance. Against these business drivers act forces coming from

already existing software (legacy) and new software (technology trends).

All organisations must deal with legacy systems. In fact, our six case stud-
ies lead us to formulate this tentative proposition:

Proposition 3. New technology is added to old technology. It al-

most never fully replaces old technology.

Organisations differ widely in the relative priority given to these forces.
We encountered organisations were the attention to business goals and

business problems was merely symbolic and technology trends where the

driving force. In other organisations, all four forces where given due
weight in procurement decisions.

9.3.3 Business System Architecture

A business system is a software system used in some, but not all, business

processes. It is developed or bought to provide certain services in certain
business processes, and therefore has particular user groups. Infrastructure

software can be found in all businesses, but business systems are often lo-

cal to one business. A government organisation might have business sys-
tems to compute subsidies, income tax, or other legal obligations, and a fi-

nancial organisation might have business systems to compute risk,

mortgage interest, or an insurance premium.

It is customary to distinguish two types of business systems: information
systems, which store data, and applications, which use data. Because of

their close relationship with business processes, organisations can maintain

a landscape map of business systems in tabular format such as shown in
Fig. 9.9 (see Sect. 7.2.2 for more about landscape maps).

Each business process is represented by a column that contains the busi-

ness systems used by that process. A system used in more than one process
spans several columns. (If these columns are not adjacent, the business

system must be represented by a rectangle fragmented over several col-

umns.) If an application and an information system are in the same col-

umn, then the application has some interface to this information system.
This interface can be made explicit in a CRUD table such as shown in

Table 9.1, which gives more information about the interfaces between

business systems in one column of the landscape map of Fig. 9.9. CRUD
tables were introduced in the 1970s in information engineering and related

methods (Martin 1982, 1989).

236 Architecture Alignment

Application

area

Process 1

Application 1

Information system 2

Application 4

Information system 3

Information system 1

Business

systems

Business

processes

Subject

area

Application 2

Application 3

Process 2 Process 3 Process 4

Fig. 9.9. Format of a landscape map of business systems.

Table 9.1. Format of a CRUD table of business systems. C=Create, R=Read,
U=Update, D=Delete.

 App. 1 App. 2 App. 3 App. 4

Information system 1 CR UD

Information system 2 U
Information system 3 CD RU R U

In terms of the GRAAL framework, landscape maps and CRUD tables are

communication models. They represent communication interfaces among

systems. These can be represented in yet another way, conveying other in-
formation, in a communication diagram. In Fig. 9.10, we see an ArchiMate

diagram of the systems of Fig. 9.9, that shows the possible communication

between business systems. It shows that information systems do not com-

municate directly but only through applications. This information is not
visible in the landscape map or in the CRUD table. The communication

diagram can be used to trace possible impacts of changes. If a system is

changed, then we must trace communication links to neighbouring systems
to see if those systems are impacted by the change.

Applications can be grouped into application areas, which are coherent

groups of business activities, that require the same business knowledge.

For example, an insurance business might distinguish application areas
such as claims handling, mortgages, life insurance, health insurance, etc.

Each of these application areas requires certain expertise, and for each

Alignment Phenomena 237

there are certain groups of applications that may be used in various busi-

ness processes. In Fig. 9.9, two application areas are represented: the first

area contains applications 1 and 3, and the second one contains appli-
cations 2 and 4.

Information systems can be grouped into subject areas, which are coher-

ent parts of the world about which data is stored in information systems.
Example subject areas in an insurance business are customers and insur-

ance contracts. Two subject areas are shown in Fig. 9.9, one containing in-

formation systems 1, 2, and 4, and the other with information system 3.

Process 1 Process 2 Process 3 Process 4

Information
system 1

Application 1 Application 2 Application 3 Application 4

Information

system 3

Information
system 2

Fig. 9.10. Communication diagram of business systems. A bi-directional arrow

represents the possibility of communication between the two systems.

If an information system is used by many different business processes, it

spans many columns. This means that all these processes use the same data
with the same definition, which is good for the coherence among these

processes. On the other hand, the more business processes an information

system spans, the more difficult the system is to manage. Different pro-
cesses usually have different data needs and different data definitions, and

the more processes a system is to support, the more complex requirements

negotiations become and the more complex data definitions result. A simi-

lar observation can be made of applications spanning more than one col-
umn. This leads us to the following proposition.

238 Architecture Alignment

Proposition 4. The manageability of a business system is inversely
proportional to the number of business processes supported by the

system.

The reason for this is that the semantics, behaviour, and interfaces needed

to support different business processes are usually different.

Another generalisation we can make from our observations is the fol-

lowing:

Proposition 5. Business systems tend to gravitate to infrastructure.

As a business system becomes standardised, more users start using it until

it is so generally available that it has become part of the infrastruc-

ture (Weill and Vitale 2002). Many components of ERP systems started
out as special-purpose business systems and by the time they have become

part of an ERP system, they are part of the infrastructure.

9.3.4 Strategic Misalignment

In a well-known paper, Henderson and Venkatraman identify different

ways to align what they call IT infrastructure to the business (Henderson

and Venkatraman 1993). We have also described their approach in Chap.

1. The GRAAL framework is a refinement of the Henderson–Venkatraman
framework for strategic alignment because the GRAAL framework uses

the same distinction between business systems and IT infrastructure. Three

layers of our framework are shown in Fig. 9.11: infrastructure, business
systems, and business. It shows the framework along the refinement di-

mension, where on the left-hand side we have strategic, long-term descrip-

tions and on the right-hand side we have operational descriptions of the IT

infrastructure, business systems, and the business. The common way of
working in the organisations we studied is that business operations, in par-

ticular business processes, drive the design decisions about business sys-

tem architecture. Landscape maps in one form or another play a central
role in this. Infrastructure decisions, on the other hand, are driven by vari-

ous forces, one of which is business strategy. This leads to an infrastruc-

ture architecture that may not necessarily align very well with business
system operations.

Alignment Phenomena 239

Refinement

Business strategy Business operations

Business system operations

IT infrastructure operationsIT infrastructure strategy

Technology Legacy
Problems

possible strategic misalignment

Fig. 9.11. Strategic misalignment.

Proposition 6. Business system architecture is driven by business
operations and infrastructure architecture is driven by the IT infra-

structure strategy.

The result is a strategic misalignment that is hard to repair. This misalign-

ment is aggravated because the business system development process is
usually out of phase with the infrastructure development process. Business

systems are (re)developed when the business calls for it; for example, be-

cause users ask for it. Infrastructure, by contrast, is (re)developed on a
time-driven bases; for example, once a year. The two processes are usually

out of step with each other. One solution to this problem is to (re)develop

business systems in a time-driven manner too, and synchronise this with

the infrastructure process. Although this solves the problem of synchroni-
sation of the two processes, it introduces the problem that the response to

business needs is slowed down. We have not seen this solution practised in

the organisations we studied, so we cannot comment upon the effective-
ness (or lack of it) of this solution.

9.3.5 Conway’s Law

In a landmark article published in 1968, Conway claimed that the structure

of a designed system will be isomorphic to the communication structure of
the designing system (Conway 1968). This has become known as Con-

way’s law. The reason is simple: if the system to be designed is too large

to be understood by one person, then several persons will be involved in
the design. But these must agree a work breakdown among themselves.

This work breakdown will be reflected in the structure of the designed sys-

tem, because each designer will work on his or her own part.

We see this law at work in the way infrastructure is managed. Infra-
structure is partitioned into domains, and for each domain there are one or

240 Architecture Alignment

more infrastructure domain specialists who follow the technology market,

translate business strategy into acquisition decisions for their infrastructure

domain, and generally manage that domain. In all organisations studied,
we found an isomorphism between the infrastructure domain architecture

and the infrastructure management department, which was organised ac-

cording to the same domains. This has an unexpected consequence for any
reorganisation of the infrastructure architecture.

Proposition 7. A change in infrastructure architecture should be ac-

companied by a change in the infrastructure management structure.

This can be a hindrance to change, because infrastructure managers tend to
derive their status, and also their salary, from the number of domains they

manage.

Business

Business system

design department

Business system

layer

1

23

Fig. 9.12. Conway’s law for the business system layer.

In the business system architecture, Conway’s law implies that the busi-
ness system layer will be isomorphic to the business system design de-

partment (alignment 1 in Fig. 9.12). This means that, say, different appli-

cation areas and subject areas are designed by different design groups. But

we have already seen that to align business systems to the business, there
must be a structural similarity between the two (alignment 2 in Fig. 9.12)

as represented by the landscape map. As a consequence, in order to

achieve alignment, the business system department should structure itself
according to the business supported by the systems they design (alignment

3 in Fig. 9.12).

Proposition 8. Business system alignment is achieved by aligning
the business system design department with the supported business

operations.

For example, if the business is structured according to departments, where

each department handles a set of business processes, then the business sys-
tem design group should organise itself in the same way. This has the con-

sequence that business system architects are in fact requirements engineers

Alignment Phenomena 241

for particular business departments. They build a relationship with that de-

partment in which they build up implicit knowledge of user requirements,

and develop an early warning system for impending changes in user re-
quirements long before these changes are ratified officially.

The importance of such a relation was emphasised in one of the case

studies we did. The organisation in question was divided into a number of
departments, all of which served a specific part of the company’s market.

The IT department was organised according to the company’s structure:

for each department there was a business unit in the IT department that

handled all IT-related work for the specific department. Each unit had its
account managers, architects, software developers, and maintenance per-

sonnel. The advantage of structuring the IT department in such a way is

that specific knowledge about a department is concentrated in one business
unit.

At a certain point in time the IT department was reorganised according

to the software development process. All account managers were put in
their own business unit, as were all architects, software developers, and all

maintenance personnel, respectively. The original idea was that each

member of a business unit (e.g., an architect) could be assigned to projects

of different departments, depending on availability of personnel within the
business unit. Note that this is in contrast to Conway’s law, and in practice

meant that specific knowledge of a department’s market was no longer

available within projects. This problem was solved informally by forming
teams within the business units, each of which (again) serving a specific

department. When a project is started from a certain department, personnel

from the related team are assigned to this project. Although the teams are
informal units (and cannot be found on the organisation chart), the relation

between the departments and people designing systems for these depart-

ments is restored, thereby confirming Conway’s law.

9.3.6 The FMO Alignment Pattern

There are very few alignment patterns to be found at the business level.

Nevertheless, one pattern can be widely observed, not because it is a fact

of nature that will emerge in any case, but because it is a pattern con-

sciously strived for by many businesses. This is the front-office/mid-of-
fice/back-office pattern, or the FMO pattern for short. An example of this

pattern for the insurance business is given in Fig. 9.13. In the back office,

operational excellence is obtained by managing large volumes of cases un-
der white-label products that could be supplied as services to various in-

surance businesses. The front office, by contrast, presents branded prod-

242 Architecture Alignment

ucts to its customers and focuses on customer intimacy (Treacy and

Wiersema 1997). The mid office acts as an interface between the two and

takes care of workflow, quality assurance, and other process-related mat-
ters.

Control domain (workflow management, security, QA)

Front office

domain 1

(e.g. CRM)

Front office

domain m

(e.g. Risk management)

Back office

domain 1

(e.g. Claim processing)

Back office

domain k

(e.g. Mortgages)

Channel 1

(e.g. website)

Channel n

(e.g. call centre)

…

…

…

Front office

(branded products)

Mid office

(process control)

Back office

(white-label products)

Fig. 9.13. The front/mid/back-office organisational pattern.

9.4 The Architecture Process

Alignment is not just a matter of correctly coupling the diverse types of

systems in the social, symbolic, and physical worlds of an enterprise, but
also a matter of adjusting the development and management processes re-

sponsible for these systems.

9.4.1 Methods

The architecture design methods in the organisations studied by us were all
based on information engineering, itself a method developed in the

1970s (Martin 1982, 1989, van der Sanden and Sturm 1997). The products

delivered by an information-engineering-like method are shown in Fig.
9.14. In order to get a list of applications and information systems, a busi-

ness process model is delivered. This may be represented by a simple

bulleted list of activities, or it may be a complex UML diagram of activi-

ties and objects passed around among activities.

The Architecture Process 243

Business process

model

Business activity

Application

Consistency:

CRUD tables

Information systems

Process area

Subject domain

entity model

Application

area

Consistency:

landscape map

Subject area

Fig. 9.14. Products delivered by an information-engineering-like method.

Our observation about business process modelling is this:

Proposition 9. The more complex a process modelling notation, the
more decisions must be made to build the model, and the more er-

rors are made in the model.

While some complex and mission-critical business processes may require a

complex notation, we think that many business processes are not that com-
plex and can do with a more simple notation. Process notations such as

Testbed (Eertink et al. 1999) or the ones used in the area of process man-

agement may be suitable (Hardjono and Bakker 2001, van Velzen et al.

2002).
Whatever the case, the business process model yields a list of business

activities to be supported, and for each of these an application may be ac-

quired to support executing the activity. Applications use data, and this is
stored in information systems. In order to find the relevant information

systems, the subject domain of the business processes is modelled, usually

in an entity model. The subject domain of a business process is the part of

the world about which the process needs data. Consistency between appli-
cations and information systems is maintained by means of CRUD tables

or similar techniques. Because all of these models must show a lot of in-

formation, usually abstractions are made in the form of process area mod-
els, application area models, and subject area models. Our observation is

that mutual consistency among all these models is never obtained.

244 Architecture Alignment

Proposition 10. Consistency among process models, application

models, and subject domain models is never achieved completely.

The reason for this is that these models represent a large amount of infor-
mation that is managed and owned by different organisational actors who

do not coordinate all their activities among each other. There are just too

many organisational change processes going on concurrently to keep all

models mutually consistent. In this context, the following observation is
relevant:

Proposition 11. Current architecture methods and notations are too
complex and inflexible to be used in the current dynamic business

environment.

Notations like UML are at most used very fragmentarily, and architecture

methods, if used at all, are used very opportunistically. There is a need for

lightweight methods and techniques for architecture design. Furthermore,
none of the organisations we studied incorporated techniques to deal with

cross-organisational IT. Nevertheless, cross-organisational IT has been

important since the rise of EDI in the early 1980s and the current trends in
networked business, value networks, value chain automation, and out-

sourcing create an urgent need for incorporating network aspects in IT ar-

chitecture alignment. Finally, the rapid rise of mobile and ubiquitous tech-

nology such as Radio Frequency Idenfication (RFID), cell phones, and
wireless PDAs create an additional need to get to grips with the alignment

between software infrastructure and physical infrastructure. With mobile

technology, the physical location of software is important and this has con-
sequences for the services offered by mobile technology, as well as for the

management of this technology.

9.4.2 IT Governance

IT governance is the activity of controlling IT. It consists of making deci-
sions about acquisition, change, and disposal of IT, as well as monitoring

IT performance data in order to be able to control IT more effectively and

efficiently. IT governance is part of corporate governance. As we dis-
cussed in Chap. 1, recent developments such as the Sarbanes–Oxley Act in

the USA and the Basel II agreements in the financial sector have brought

corporate governance, and in its wake IT governance, to the centre of at-

tention of management of large corporations.

The Architecture Process 245

Business

unit

Board of

directors

Executive

management

Chief CIO

BU CIO

Business unit

management

Business systems

requirements engineer

Business

systems

management

Business

unit

BU CIO

Business Unit

management

Business systems

requirements engineer

Infrastructure

domain CIO

Infrastructure

domain

management

Business

systems

development

department

Business

systems

architecture

group

Fig. 9.15. A sample of coordination relations to manage. Each line represents one

coordination relation.

We view IT governance as a coordination problem. Some of the rela-
tionships to be coordinated in IT governance are shown in Fig. 9.15. In dif-

ferent companies, different organisational entities are involved, but usually

there are executive management, CIOs, business units, and IT architects
involved. Whatever the configuration of managers, committees, and other

stakeholders, we can make one simple generalisation from our cases stud-

ies: architecture design is a top-down process that conflicts with the local

interests. This tension occurred in all organisations studied by us as a ten-
sion between the architects of the business system layer and project man-

agers who implement one particular business system.

246 Architecture Alignment

Proposition 12. Architecture design of the business system layer
uses global optimisation criteria. Architects of individual systems

within the business system layer use optimisation criteria that are

global for their project, but local for the business system layer.

The architecture of a business system layer is designed with global cost re-

duction in mind. This always requires reuse of components in different

systems, or the imposition of standards that globally make sense but lo-
cally may seem awkward to follow. When an individual system is de-

signed, the project manager or business unit manager responsible for the

project will always find good reasons why this globally optimal design is
not optimal for his or her system, and will try to get around the global ar-

chitecture. The only way around this tension is to make the project man-

ager directly accountable to someone responsible for maintaining the
global architecture, such as the chief CIO in Fig. 9.15. In practice, the pro-

ject manager often comes from a business unit and is accountable to a BU

manager. This then leads to the conflict between local and global optimi-

sation. In the USA, this is identified as a major concern. The Clinger–
Cohen Act of 1996 (see Sect. 1.4.2), which aims to establish better IT gov-

ernance in government agencies, tries to improve the situation somewhat

by giving explicit responsibility for a coherent project portfolio to the CIO.
IT governance is currently for a large part addressed from the perspec-

tive of management science. This means that solutions for IT governance

are sought solely in the business domain, e.g., by organisational change (as

required by the Clinger–Cohen Act, for example), by control frameworks
such as COBIT (see Sect. 2.1.4), but also by improving personal skills of

CIOs and architects. It is doubtful whether this is sufficient. In addition to

the management science approach, research is needed to develop an engi-
neering approach that seeks to develop IT architectures with attention to

governance at all stages of the system life cycle and for all layers, from IT

infrastructure to the business layer.

9.5 Summary

We presented a framework for describing alignment phenomena consisting

of three system dimensions: system aspects (services, behaviour, commu-

nication, semantics, and quality), system aggregation, and system life cycle
states. The fourth dimension of our framework is not about systems, but

about system descriptions, and concerns the abstraction level at which we

describe systems. We have used this framework to analyse six cases of ar-

Summary 247

chitecture alignment in large organisations in the government and finance

sector. In all these organisations, IT architecture has a layered service pro-

vision structure. The infrastructure layer contains systems that must be
available for all users; the business system layer contains systems available

for particular business processes. Business systems have a tendency to

gravitate towards the infrastructure layer. Because infrastructure is driven,
among others, by the business strategy, and the business system layer is

driven primarily by the actual business operations, there is usually a mis-

alignment between these two layers. By Conway’s law, this misalignment

in the software architecture corresponds to a misalignment among system
development departments. Most organisations structure their infrastructure

layer into a number of technology domains, and structure their business

system layer into a number of business domains. This roughly corresponds
to a front/mid/back-office structure where the front office contains the

business-specific systems and the back office contains generic, white-label

systems.

10 Tool Support

Enterprise architecture, by nature, requires the interconnection and accu-
mulation of large amounts of information from various sources. An enter-

prise modelling language, such as the one introduced in Chap. 5, can only

be successful if supported by adequate tooling. Visualisation and analysis
of architectures, as described in Chaps. 7 and 8, respectively, can hardly be

carried out by hand and require tools as well. In this chapter, we outline

the current state of the art in enterprise architecture tools, outline our vi-

sion of future tool support, and describe the design and operation of a
number of (prototype) tools that support the modelling language, visuali-

sation, and analysis techniques described in previous chapters. Specifi-

cally, we will focus on the design of a general enterprise architecture
workbench, the necessary infrastructure for viewpoint-based architecture

modelling, and tools for functional and quantitative analysis of architec-

tures. The next chapter, on practical applications, will describe the use of

some of these tools in practice.

10.1 Reasons for Enterprise Architecture Tooling

There are a number of reasons for dedicated tool support for enterprise ar-

chitecture. First of all, tools help to standardise the semantics and notation
of architecture models. If the use of tools is accompanied by proper train-

ing and education, a company-wide introduction of a tool (or set of tools)

is a big step towards standardisation of the architecture languages and
practice within the organisation. Second, tools can support the design of

correct and consistent models through automated constraint checking and

application of architecture principles. Third, tools can support the architect

in the application of architecture patterns and reuse of components and so-
lutions already in use in the organisation. Fourth, tools can support the

comparison of alternatives, comparison of ‘as is’ and ‘to be’ situations,

impact-of-change analysis and quantitative analysis of models. Moreover,
tools can support migration paths from the current situation to a newly de-

signed ‘to be’ situation.

250 Tool Support

Modelling tools are of course an important category of tools for enter-

prise architecture, but not the only category. Architecture models need to

be stored somehow for later reference, and it must be possible to publish
architectures to other stakeholders. Support for enterprise architecture can

therefore be subdivided into the following categories:

− Modelling and design: Tools that support modelling and design of archi-

tecture models.

− Reporting and publication: Tools that allow the design, either interac-

tively or through configuration, of reports and viewpoints for specific

stakeholders.

− Storage and retrieval: Metadata repositories that store meta-models,

models, and viewpoint specifications.

10.2 The Current Architecture Tool Landscape

The market for enterprise architecture tools is still immature, the number

of tools available limited, and tools that are available suffer from partial

support for enterprise architecture and limited interoperability with other
tools. Often, partial support is due to the fact that tools presented as tools

for enterprise architecture originally were domain-specific tools developed

for other purposes like software design or business process design. Weak
interoperability between tools has both a technical and a conceptual aspect.

Technically, tools are not designed with interoperability in mind. Of

course, many tools have the ability to import or export XML Metadata In-
terchange (XMI) (Object Management Group 2003c) for UML and some

have features to import file formats of other tools. However, often these

functionalities have the sole purpose of facilitating the migration from one

modelling tool to another. Conceptually, tools are built for creating models
in a specific modelling domain, and not for modelling relations to models

or objects outside that domain. Depending on the starting point for setting

up tool support for enterprise architecture, a number of tool categories are
of interest (Fig. 10.1):

− Enterprise architecture modelling tools: Tools for enterprise architecture

support the complete range of architecture domains, in most cases at a

higher abstraction level than domain-specific tools.

− IT management tools: These tools are geared towards managing the IT

assets of the enterprise, sometimes called portfolio management tools.

− Software design and development tools: These are software modelling

tools that extend their scope to business process modelling and enter-

prise architecture modelling by adding concepts and diagram types.

The Current Architecture Tool Landscape 251

Repositories

EA Modelling

Software

Design and

Development

Business

Process

Design

Business

Process

Management

IT

Management

Fig. 10.1. Tool categories.

− Business process design tools: Similar to the software modelling tools,

business process modelling tools extend their scope with IT-related con-
cepts and higher-level concepts for enterprise architecture modelling.

− Business process management tools: These are aimed at the operational

management of business processes, e.g., by providing process measure-

ments and other management data.

− Repositories: Metadata repositories and IT management tools that add

modelling and analysis capabilities that partly cover the functionality

expected from enterprise architecture modelling tools.

Without going into a detailed comparison of commercially available tools,

we give a short overview of tools on the enterprise architecture tool mar-
ket. The following tools address the central challenge of enterprise archi-

tecture, which is ‘representing the enterprise’s information and technology

portfolios to facilitate understanding and management’ (Gartner 2004):

− Allen Systems Group’s Rochade: A general-purpose metadata reposi-

tory with extensive publication and visualisation capabilities. Rochade

supports the Common Warehouse Meta-model (CWM) of OMG.

− Casewise Corporate Modeler: A business process modelling (BPM) tool

that has been enhanced to support enterprise architecture.

− Computas Metis: An enterprise architecture tool with a customisable

meta-model and rich modelling capabilities.

252 Tool Support

− MEGA International Software Suite: MEGA approaches enterprise ar-

chitecture from a BPM perspective, and has limited support for the non-

business aspects of enterprise architecture.

− Popkin System Architect: An enterprise architecture tool with a flexible

meta-model and rich modelling capabilities. System Architect can also
be configured to support the ArchiMate modelling language.

− Ptech Enterprise FrameWork: Another enterprise architecture tool.

− Proforma ProVision: A BPM tool that has been enhanced to support en-

terprise architecture.

− IDS Scheer’s ARIS: Also a BPM tool enhanced to support enterprise ar-

chitecture.

− Adaptive Enterprise Architecture Manager: A MOF-compliant reposi-

tory that integrates with a wide range of modelling tools; furthermore,

Adaptive offers tools for business process management and IT portfolio

management.

− BiZZdesign Architect and BiZZdesigner: BiZZdesign Architect is an ar-

chitecture modelling tool based in part on the ArchiMate language.

BiZZdesigner, formerly Testbed Studio, is a BPM tool supported by a

method and handbook.

− Troux Technologies Troux 4: Although Troux Technologies does not

consider itself a supplier of enterprise architecture tools, it offers tools
for strategic IT management including the alignment of IT assets with

business aspects. The latter is an issue at the heart of enterprise architec-

ture.

In conclusion, five of these tools are tools that start from a BPM perspec-

tive. As a consequence, these tools are suitable only if you approach enter-

prise architecture top down from a business perspective. One tool is not a
tool for enterprise architecture modelling, but a general-purpose repository

that can be used for storing and disclosing architecture models. The re-

maining tools, Computas Metis, Popkin System Architect, BiZZdesign Ar-

chitect, and Ptech Enterprise FrameWork, offer extensive and flexible
modelling support for enterprise architecture.

10.3 Tool Infrastructure

In order to make our vision tangible, we have defined a reference archi-
tecture that integrates both domain-specific tools and (new) tools for en-

terprise architecture. The foundation of the architecture is a repository for

storage and retrieval of models, meta-models, viewpoint specifications and
views. Another key element of the architecture, although not explicitly

Tool Infrastructure 253

mentioned, is a language for describing enterprise architectures that en-

ables integration of existing domain-specific architectures, architecture de-

sign and analysis, decision support and communication.
This tool infrastructure is depicted in Fig. 10.2. The Enterprise Architec-

ture Service Layer in between the repository and the enterprise architecture

tools at the top provides services for the manipulation of models and
views:

− selection of content from domain-specific and enterprise architecture

models;

− transformation of domain-specific models to an enterprise architecture

language and vice versa;

− creation and maintenance of views;

− specification and management of viewpoints.

EA Modelling
Tool

Viewpoint
Designer

View
Presentation

Tool

Impact
Analysis Tool

Quantitative
Analysis Tool

Enterprise Architecture Service Layer
Content Selection , Model Transformation , Viewpoints , Views

Repository
EA

Model

UML

Model

BPMN

Model

Data

Model

Workflow

Model ...

Domain-

Specific
Tool

Reporting
Tool

Scanning &
Monitoring

Fig. 10.2. Tool infrastructure for enterprise architecture.

The infrastructure outlined here requires the integration of existing tools

with a repository, and the integration of enterprise architecture tools with
the Enterprise Architecture Service Layer. Technically, the integration of

tools can be characterised by the following aspects (Schefstroem and van

den Broek 1993):

− Data integration addresses the issue of sharing data between tools and

the storage of diagrams, models, views, and viewpoints.

254 Tool Support

− Control integration addresses the issue of communication and coordina-

tion between tools (and the integration framework, if existent).

− Presentation integration concerns the user interaction with the integrated

set of tools. Some frameworks completely wrap the existing interfaces

whereas others keep original interfaces intact and offer integration
through a repository (model integration).

This is similar to the well-known ‘model–view–controller’ pattern. In our

vision, a well-integrated suite of cooperating enterprise architecture tools
should address all three integration aspects. Based on the reference archi-

tecture from Fig. 10.2, the ArchiMate project has defined a tool architec-

ture for the so-called ‘ArchiMate workbench’ that does exactly that.

10.4 Workbench for Enterprise Architecture

This section presents the software architecture for the ArchiMate work-

bench. First, a number of design principles are identified that guided the

design, then we present the workbench architecture.
The most essential design principle behind the ArchiMate workbench is

that the workbench integrates existing modelling languages. The work-

bench does not integrate existing modelling languages one-to-one, but
brings them to the abstraction level of enterprise architecture, by translat-

ing them to one general modelling language as advocated by Creasy and

Ellis (1993).
A second important design principle is that the workbench is viewpoint

driven. The workbench serves as an instrument to construct views of ex-

isting or future models and a modelling tool at the same time. The starting

point of each workbench session is a viewpoint definition that specifies
how to visualise and model a view. Furthermore, the workbench is trans-

parent and extensible. The workbench can open architectural constructs in

their native modelling tools. In addition, new modelling languages and as-
sociated modelling tools can easily be integrated with the workbench.

The following subsections zoom in on model integration, viewpoint

definition, transparency and extensibility, the workbench architecture, and

finally exchange formats. A more elaborate explanation is given in Leeu-
wen et al. (2004).

10.4.1 Model Integration

To integrate existing models expressed in heterogeneous modelling lan-
guages, the ArchiMate modelling language described in Chap. 5 is used.

Workbench for Enterprise Architecture 255

The ArchiMate modelling language is not ‘just another modelling lan-

guage’, but integrates existing, more specific modelling languages, as we

have outlined in Sect. 5.1. Here, we will describe in more detail how this
language integration can be realised in a tool integration environment.

To integrate fully a specific modelling language with the workbench,

both a bottom-up and a top-down transformation are required between that
language and the ArchiMate language. Due to the potentially different ab-

straction levels between a specific language and the ArchiMate language, a

bottom-up transformation is likely to lose details and a top-down trans-

formation is likely to be incomplete. In extreme cases a top-down trans-
formation may only produce a template.

To reduce the abstraction mismatch, ArchiMate constructs may be spe-

cialised by means of ‘is-a’ relations. The workbench may still treat these
constructs as native ArchiMate constructs, while at the same time the

transformations to and from these constructs can be made more exact. For

example, the ArchiMate construct application component may be special-
ised to UML application component in order better to match the UML con-

struct component (Fig. 10.3). Such a specialisation may add attributes or

assign a more specific semantics to the concept of component.

UML – ArchiMate concepts Testbed – ArchiMate concepts

UML concepts Testbed concepts
transformation transformation

Application

Component

UML

Application

Component

UML

Application

Component

Business

Process

Testbed

Business

Process

Behaviour

Block

ArchiMate concepts

Fig. 10.3. Specialised ArchiMate constructs for UML and Testbed (Eertink et al.

1999).

256 Tool Support

10.4.2 Viewpoint Definition

As we have described in Chap. 7, a viewpoint is a pattern or template from

which to construct individual views. A viewpoint establishes the purposes
and audience for a view and the techniques or methods employed in con-

structing a view.

The ArchiMate workbench adopts an operational interpretation of view-

points. A viewpoint consists of different types of rules governing the se-
lection and presentation of view content, and controlling the interaction

with, and interpreting changes to, the view presentation. Furthermore, a

view might itself be based on another view, leading to a chain of views in-
stead of a single step from a model to a view. Ultimately the distinction be-

tween model and view is rather arbitrary.

As the workbench aims to support the architecture design process, it fo-
cuses on the basic design viewpoints that are dedicated to the design pro-

cess and were outlined in Sect. 7.5. These viewpoints consist of straight-

forward selection, presentation, interaction, and interpretation rules. In the

context of the workbench, a design viewpoint simply defines which mod-
elling constructs are allowed, with which symbols these constructs are pre-

sented, and which connections these constructs are allowed to have. Nev-

ertheless the workbench may well serve as a starting point for more
complex viewpoints that are based on more complex rules and designed to

consult models rather than to manipulate models. In Sect. 10.5 we will fo-

cus in more detail on the design of such a more complex, interactive view-
point infrastructure.

10.4.3 Transparency and Extensibility

To allow easy integration of new modelling tools, the workbench will

adopt an adapter pattern (Gamma et al. 1995) with the motivation that
modelling tools should be made to integrate by means of ‘plug and play’.

The workbench prescribes the tool adapter interfaces. The workbench

trusts each adapter to be capable of bottom-up and top-down transforma-

tions, between the adapter’s associated modelling language and the Ar-
chiMate modelling language.

To obtain transparency, the workbench uses the tool-specific adapter as-

sociated with a modelling construct to open that modelling construct in its
associated modelling tool.

Workbench for Enterprise Architecture 257

10.4.4 Software Architecture

The workbench architecture consists of four tiers: a tool tier, an integra-

tion tier, a view tier, and a presentation tier (Fig. 10.4). The main compo-
nent in the workbench tier is the ArchiMate workbench: the workbench al-

lows the manipulation of ArchiMate models. Each ArchiMate model

conforms to an ArchiMate viewpoint that defines which modelling con-

structs are allowed, with which symbols these constructs are presented,
and which connections these constructs are allowed to have. The view pre-

senter and interactor is responsible for visualising the resulting view, and

for interacting with the user. A specific implementation of the view man-
ager and the view presenter and interactor is described in Sect. 10.5.

In the tool tier, domain-specific modelling tools such as Rational Rose

or ARIS may be used to design tool-specific models according to a spe-
cific modelling language, such as UML or the ARIS language.

To allow ArchiMate models to elaborate upon or break down into tool-

specific models, the integration tier links modelling tools and their lan-

guages to the ArchiMate workbench. The glue used is a tool adapter spe-
cific to each modelling tool: a tool-specific integrator. This integrator can

perform transformations between tool-specific models and ArchiMate

models. The ArchiMate workbench controls the integrator: the workbench
dictates when to transform what models or what content and decides when

to open a model in its native modelling tool.

ArchiMate Workbench

<X>

Integrator

View

Manager

View

Presenter &

Interactor
User

<X>

model

ArchiMate

model

Viewpoint

specification

<X>

Tool

Tool tier Integration tier View tier

Symbol

l ibrary

ArchiMate

view

Presentation tier

Fig. 10.4. The four-tier workbench architecture.

258 Tool Support

10.4.5 Exchange Formats

ArchiMate models and integration content are stored and exchanged using

standard XML-based (W3C 2000) formats. These formats not only pre-
scribe the way content should be formatted, but also provide a meta-lan-

guage to express meta-information about the content, which helps to inter-

pret that content. When a tool-specific integrator (see Fig. 10.4) provides

integration content in XML, it uses this meta-language to express the inte-
gration schema, i.e., what modelling constructs that content uses. For ex-

ample, a Rose-specific integrator would use the meta-language to specify a

schema with a UML-specific version of the ArchiMate concept Applica-
tion Component.

Examples of XML-based exchange formats that come with meta-lan-

guages are XML itself, XMI (OMG 2003a), and OIFML (ODMG 2000).
Corresponding meta-languages are XML Schema (W3C 2001), and ODL

(ODMG 2000) respectively. At this point we opt for XMI, because it is

alive and has already been widely adopted for the exchange of models. A

detailed design of the workbench followed by the realisation of a prototype
will show whether XMI fits our needs.

10.4.6 Workbench at Work

To illustrate the value of the workbench we present an example: an exist-

ing UML model and an existing Testbed model (Eertink et al. 1999) are in-
tegrated in an ArchiMate model (Fig. 10.5).

Application components and services

External application services

 Damage claiming process

Registration PaymentValuationAcceptance

Claims

administration

service

Risk

assessment

service

Payment

service

 Risk

 assessment

 Claims

 administration

 Financial

 application

Claim

information

service

Customer

administration

service

 Customer

 administration

ValuationAcceptanceRegistration Payment

Claims

administration

Customer

administration
Risk

assessment

Financial

application

Formal

claim
Policy

(contract)

Central

administration

Fig. 10.5. An ArchiMate model (right) based on a Testbed model (top left) and a

UML model (bottom left).

The UML model depicts a number of application components that are used

by our imaginary insurance company ArchiSurance. The components are

Workbench for Enterprise Architecture 259

translated to ArchiMate components in a straightforward way. The Testbed

model represents a number of process blocks that realise claim handling

from registration to payment. This model is translated to ArchiMate con-
cepts as well. Now, the workbench can be used to order the objects and de-

fine relations between them. In this case a layered architecture is created

with services that are realised by components and provided to business
processes. This results in a view relating business processes to IT compo-

nents by means of service concepts. The following operations are applied

in the creation of the integrated model:

− Translation: The interface offered by the Claims administration compo-
nent is translated to the Claim information service. UML dependency

relations are translated to ArchiMate use relations.

− Selection: Mainly processes and components are selected. Several ob-

jects from the models on the left are not relevant in the ArchiMate

model. For example, the Central administration component is left out
because it is not used by the business process.

− Extension: Services offered by components to processes are added;

concepts are grouped using ArchiMate grouping constructs.

The GUI of the workbench prototype divides the application window into
three frames (Fig. 10.6): a content explorer, a canvas for modelling, and a

concept explorer.

Fig. 10.6. Workbench user interface.

The canvas (centre) shows the currently opened ArchiMate model. Ob-

jects may be added to the model in two ways:

260 Tool Support

− Objects from the content explorer may be dragged and dropped onto the

canvas. These objects are in fact references to objects in the underlying

tool-specific models.

− Constructs from the concept explorer may be dragged and dropped onto

the canvas. In this way, newly created instances of those constructs are
added to the model.

The content explorer (left) shows hierarchical representations of the tool-

specific models on which the currently open ArchiMate model is based.
These tool-specific models have been translated into (possibly specialised)

ArchiMate concepts, as was explained in Sect. 10.4.1. The concept ex-

plorer (right) shows only those concepts from the ArchiMate language that
are relevant to the current viewpoint.

10.5 View Designer Tool

The view designer tool supports the visualisation and editing of enterprise

views and forms a proof of concept of several key concepts introduced in
this book, in particular the separation of a model and its visualisation

(Sects. 3.3 and 7.2) and actions in models and views (Sect. 7.3). A view-

point describes both model operations and visualisation issues. These two
activities are strictly separated in the view designer tool. It consists of two

main interacting components, a view manager that updates the views and

models, and a view presenter and interactor that visualises the models and
views and handles the interaction with the user (Fig. 10.7). These compo-

nents were also identified in the overall software architecture of the Ar-

chiMate workbench (Fig. 10.4).

View Designer

ArchiMate Workbench

<X>

Integrator

View

Manager

View

Presenter &

Interactor
User

ArchiMate

model

Viewpoint

specification

Symbol

library

ArchiMate

view

Fig. 10.7. High-level software architecture of the view designer.

View Designer Tool 261

A model or view contains not only concepts and relations, but also ac-

tions that describe how the model or view can be changed. This includes a

description of the parameters needed to execute an action. The viewpoint
specifies how these parameters can be collected, i.e., which input devices

should be used and in which order they should be invoked. Designing a

viewpoint comes down to the following steps:

1. Define the static part of the viewpoint using viewpoint rules for the

model and viewpoint rules for its visualisation.

2. For every model and view, define the actions that can change the model

or view.
3. For every action, define which parameters it needs to have to be exe-

cuted.

4. Define how these parameters can be collected.
5. Define the order of steps (protocol), including the use of virtual input

devices (menus, text input, buttons, etc.), variables, and constants.

We illustrate the view designer by explaining how it has been used to de-
velop the landscape map viewpoint introduced in Sect. 7.2.2. To under-

stand how the view designer can be used, the user has to understand some

technical details. For example, a model or view is represented in XML,

and a viewpoint is based on XML transformations expressed as transfor-
mation rules (see also Sect. 10.4.2). We therefore also explain in this sec-

tion how the designer realises the separation between model and its visu-

alisation, and the use of actions in models and views. We do not discuss
the reasons for a separation between a model and its visualisation, or the

need for actions in models or views, as we have already explained these in

Sects. 3.3, 7.2, and 7.3.

10.5.1 Viewpoint Rules for Creating Views and Visualisations

As outlined in the previous section, the first step we must take is to define

the static part of a view and a viewpoint. When using the view designer, it

is important to distinguish between the part of the viewpoint that is con-
cerned with the models or views, and the part that is concerned with their

visualisation. This is based on the distinction between the content of a

model or view and its presentation or visualisation, as described in Sect.

7.2. When designing views and viewpoints, it is important to distinguish
the two. Typically, first the models and views are defined, and only in a

second phase their visualisation. Models and views should not contain vis-

ual references (‘above’), but should be phrased in semantically meaningful
terms (‘more important’). Moreover, there are typically multiple visu-

262 Tool Support

alisations of the same model, either to satisfy distinct stakeholders or to

address distinct concerns.

In the landscape map viewpoint, the viewpoint rules for creating a view
define a three-place relation from the relation available in the model. The

three-place relation details, for each pair of product and business function,

which applications are used. The viewpoint rules for visualisation map this
three-place relation to visual objects, like those depicted in Fig. 10.8.

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Fig. 10.8. Visualisation of a three-place relation: landscape map of ArchiSurance.

In the software architecture of the view designer, the conceptual distinction
between a model and its visualisation has led to a distinction between a

view manager and a visualisation engine: the view manager updates the

views and models, and the view presenter and interactor visualises the

models and views and handles the interaction with the user.

10.5.2 Defining Actions in Models and Views

Having defined the static part of the viewpoint, we define the dynamic

part. In Sect. 7.3 we introduced the concepts and the rationale behind em-

bedding action in models and views. The basic idea is that enterprise mod-
els contain information about how the enterprise might change. For exam-

ple, an organisation may specify what happens when two departments are

View Designer Tool 263

merged. In the view designer, such changes to an enterprise can be mapped

to meaningful actions in views, which are represented as action names

with lists of parameters and their types. For example, a ‘merge’ action may
exist with parameters to specify which departments should be merged. The

viewpoint also contains a mapping from these parameters to (virtual) input

devices. A department can be identified by entering its name, or by using
the mouse to click on it. Finally, the viewpoint contains a routine name

that should be executed (with the collected parameters as inputs) when the

action is carried out. This routine defines the actual (XML) transformation

of the view content. For example, when two departments are merged, the
routine also specifies what happens with relations of the old department,

which may or may not become relations of the newly created department.

It would not be feasible to construct all kinds of meaningful actions
from scratch, therefore we first define atomic actions and thereafter com-

posite actions. The basic atomic actions usually come down to adding and

deleting concepts and relations. However, it is good practice to define the
actions in model as meaningful operations from a business perspective: for

example, as creating a new department, hiring a new employee, etc. Fur-

thermore, we define a set of actions for each viewpoint. For example, for

the landscape map viewpoint we define the move of an application to an-
other cell, we define changing the columns and rows of the matrix, and we

define the addition and deletion of applications. We determine for each ac-

tion what kind of parameters it needs as input, and define the consequences
of executing the action.

Next, larger actions can be defined as compositions of these atomic ac-

tions. For example, consider a view in which we define the action ‘De-
crease the average wage’. We can define this action in terms of actions on

the underlying model containing the wages of the employees. For example,

we can define this complex action as firing the boss, or decreasing every-

one’s wages by some percentage.
During this specification of the dynamic part of the model, in which we

define the actions in models and views, we still have to respect the separa-

tion of the model or view from its visualisation as we already discussed for
the static part. The actions should be defined in terms of concepts of the

model, not in terms of interaction with the user – just like the static con-

cepts and relations of a model should not be defined in terms of visual

elements like boxes and lines. For example, the specification of an action
should not deal with interaction issues such as the ordering of the values of

the parameters of the action, how the values for the parameters are col-

lected, when the action is evoked, why the action is evoked, etc.
For example, let us again consider an architect or stakeholder who

wishes to change an existing landscape map. First, the effects of this

264 Tool Support

change on the underlying model need to be assessed. Some changes may

be purely ‘cosmetic’ in nature, e.g., changing the colour of an object. Other
changes need to be propagated to the underlying model, e.g., if an object is

added or deleted.

As a more complex example, consider a view of a business process

model, and an action that merges two processes into a single process. Pa-
rameters of these action are two identifiers for the processes to be merged.

Issues which are relevant for the action of merging processes are the ef-

fects of the merger: for example, the removal of processes, addition of a
new process, transferring some relations from the old, removed process to

the new process. Issues such as which processes are merged, when pro-

cesses are merged, and why processes are merged, are not relevant for the
specification of the action itself, but are part of the interaction with the

user.

10.5.3 Interactive Visualisation

In the view designer, we have to bring the actions to life. Here, traditional
visualisation techniques are not sufficient. We need an interactive type of

visualisation and we also need interactions with the user, for instance, to

obtain values for the parameters of the action. For example, when merging

two business processes, it is the user who decides which processes have to
be merged, and when.

A crucial mechanism underlying the actions is the protocol for interac-

tion dialogues. For example, assume that the editor visualises the land-
scape map actions as a set of buttons, and that pressing a button triggers

the associated interaction protocol. If the user presses the button for adding

an object on the X-axis, the system responds with a question for the name
of the object, and asks the user where the new column must be added.

Clearly, there are also interactions that are not visualised by buttons. For

example, the action ‘change columns’ is typically triggered by a user click-

ing on the column to be moved. If we look at the interaction of the user
with the landscape map editor in more detail, we can distinguish the trig-

ger, the atomic steps and the protocol:

1. Typically the dialogues start with a trigger from the user, such as press-
ing a button on the screen.

2. The dialogue may contain several atomic interactions. For example,

when an item is added to an architecture, there are atomic interactions of
selecting the kind of item, typing in the name of the item, pointing at a

place on the canvas where the item should appear, etc.

View Designer Tool 265

3. The protocol states in which order the atomic interactions should be

done. We assume that the protocol consists of a complete ordering of

atomic interactions, such that each new atomic interaction can be done
only when the previous one has been finished.

For example, when a user presses a ‘delete’ button, the editor asks the user

which object is to be deleted (Fig. 10.9).

R3(a,b,c)

User Landscape view

press delete

ask object

Fig. 10.9. Interaction with landscape view.

An example of interaction with a landscape map view that is concerned
with both the view and the underlying model is represented in the se-

quence diagram of Fig. 10.10. The user presses the delete button, and the

landscape view asks which application should be deleted. The user clicks
on an application, which we abstractly describe by use(a,b,c). Now for the

system to delete this relation from the model, it can, due to the construc-

tion of our relation, use from support and realise, either delete sup-

port(a,b) or realise(b,c). When the user has selected realise(b,c), the action
del in the model is called, and finally the landscape map is rebuilt.

rebuild

del realise(b,c)

realise(b,c)

ask subrel

use(a,b,c)

press delete

ask object

Model User Landscape view

Fig. 10.10. More complex interaction with landscape view and underlying model.

Actions may be interpreted in different ways, depending on the stake-

holder and his or her role. The user in Fig. 10.9 is presumably allowed to

266 Tool Support

change the underlying model. However, we can block this permission by

updating the action in the view such that the del-realise(b,c) is not trig-
gered by the delete action. Since the actions are specified in the view, and

not in the landscape map tool, this blocking can be realised by another

landscape map action.

10.5.4 Example: The Landscape Map Tool

The first contours of a landscape map are usually drawn on a whiteboard,

flip-over, or piece of paper. Together with the stakeholders the architect

tries to address their concerns. The map should be such that it concentrates
on the choices that must be made. The drawing must also be such that con-

sequences are visible. In this interaction the architect chooses the concepts

on the axes and the plane, and the level of detail, leaving out the facts that
are less important. For the sake of readability and acceptance the architect

juggles a little bit with the (unwritten) rules of the landscape map. With

pen and paper this can obviously be done.
Back at the desk and using the tool we envisage, the landscape map

must be constructed in a more formal way. First, the architect needs to se-

lect the type of concepts used on the X-axis, on the Y-axis, and on the
plane (see Fig. 10.11). In our ArchiSurance example, the X-axis contains

products, the Y-axis signifies business functions, and the plane holds ap-

plications.
Next, the objects on these axes must be chosen (the X1, …, Xm and Y1,

…, Yn in the figure). If a landscape map is used to define a new architec-

ture, these objects can be freely chosen (of course conforming to the type
of the axes). Alternatively, if an existing model is visualised they may be

selected from this model. By choosing the concepts for the axes the play-

ing field is defined.

Y1

Yn

Yj

X
1

Xi Xm

Y-axis

X-axis

Z
k

R
2

R1

Fig. 10.11. Elements of a landscape map.

After this, the architect must choose the type of assertions that are made
by putting an object Zk somewhere on the plane, i.e., the relations R1 and

View Designer Tool 267

R2. In our example, the architect chooses business functions on the vertical

axis, products on the horizontal axis, and applications on the plane. The
most obvious, intuitive assertion is that an application is used by activities

required within the business function in realising the product, giving us R1

= support and R2 = realise. For every object the architect places on the
plane, these relations between Xi, Yj, and Zk are instantiated.

Furthermore, if the rectangle of the application Zk is not exactly aligned

within a row and/or column, then the relations with the X and Y elements
are in a sense ‘incomplete’. For example, an application may deliver only

some of the functionality needed to support a business function.
The landscape map editor can be described in terms of a number of ba-

sic actions that can be performed on the map. The initial state of the land-
scape map editor is an empty canvas. However, the landscape map view is
not empty. It contains actions for selecting the type of concepts on the X-
axis, on the Y-axis, and on the plane. Once these have been selected, a new
view is created which contains actions that allow the user to select and
draw the applications, such as the following:

− Draw a rectangle (rubber band) covering one or more cells of the map.

A user may choose the colour and assign an object (instance of a con-
cept) to the rectangle.

− Extend an existing rectangle with another rectangle that overlaps the

original. Colour and label are inherited.

− Modify a rectangle, e.g., its coverage, colour, and value.

− Delete a rectangle.

In this way, the landscape map actions work as a kind of bootstrapping

mechanism for the landscape map editor. All interaction mechanisms are
defined in the actions, not in the editor itself. In other words, the editor is

generic, and can be used for any other task as well.

Generating a Landscape Map from the Model

Moreover, a landscape map can be generated from a model. In Fig. 10.12 a

model is shown together with its landscape map. The left canvas visualises

five products on the left, five business functions on the right, and ten ap-
plication components in the middle. The right canvas visualises a land-

scape map as before.

Each canvas has its own set of actions. Only the actions of the active
canvas can be invoked. Most actions are invoked by buttons on the left

side of the figure, where inactive buttons are shown in grey. If an action is

invoked that changes the underlying mode, such as deleting a component,
then both views are regenerated and redrawn.

268 Tool Support

The user can add actions by adding them to the XML file that represents

the view; for example, by adding a viewpoint rule with the desired effect.
Thus, the user interface of the tool can be configured by the viewpoint be-

ing visualised, adding an extra layer of flexibility not normally present in

typical modelling and visualisation tools.

Fig. 10.12. Model with associated landscape map view.

10.5.5 Comparison with the Model–View–Controller
Architecture

If we compare our visualisation and interaction model with the popular

model–view–controller or MVC architecture used in user interface frame-
works, we see a number of differences. Consider an MVC architecture in

which a model contains a description of the architecture, and the view is a

landscape map. Moreover, assume that removing an object from the land-
scape map leads to several updates of the underlying model, maybe in-

volving the same object, maybe involving only other objects. The effect of

this interaction is defined in the controller. The point of the MVC pattern

is that it is good software engineering practice to separate these concerns
of storing a model in a database, and updating the database.

Impact-of-Change Analysis Tool 269

According to Eriksson and Penker (1998, pp. 219–222), the MVC archi-

tecture may be seen as an instance of the Core-Representation pattern used

in business modelling:

The Core-Representation pattern structures the essentials in a problem domain

with the purpose of building well-structured and easily changeable models. The

core objects of a business, such as debt, agreement, customer, product, delivery,

and order, are objects that rarely change fundamentally; conversely, the represen-

tations of these objects often change or are extended. A modeller should take this

into consideration and separate the core objects from their representations. This

process is added by the Core-Representation pattern.

Summarising, in the MVC and CR patterns, one rightly discriminates
among the model, the view (which contains both the selection and visuali-

sation aspects), and the interaction. However, the interaction in the con-

troller is typically domain or application specific. Our approach departs
from this assumption in that there is not a controller for each application,

but there is a generic controller to be used for all applications, which is

configured by the actions in the views.

10.6 Impact-of-Change Analysis Tool

The impact-of-change analysis tool illustrates the way in which structural

impact analysis of an architecture can be done. By ‘impact analysis’, we

mean the following: given an entity within the architecture which is con-
sidered to be modified or changed, which other entities in the description

are possibly influenced by this change?

Users can use the analysis tool for these kinds of analyses. They can
open different views of an architecture and select a model element within

one of these views. After that, the tool shows the impact a change to this

model element would have on the architecture. It does this by analysing

the direct and indirect relations between the selected model element and
other model elements within the architecture.

Within the ArchiMate language, there are many different relations be-

tween concepts. The tool allows the user to select a subset out of the entire
set of relation types. If a subset of relation types is selected, only relations

of the types within the subset are involved in the impact analysis. By in-

cluding or excluding certain relation types, architects gain insight into the

mutual dependencies between the entities within an architecture.
The core of this analysis tool is the Rule Markup Language (RML)

(Jacob 2004, de Boer et al. 2005). RML is an XML-based language for

transforming XML documents. Whereas the existing transformation tech-

270 Tool Support

niques for XML such as XSLT (W3C 1999) are geared towards syntactic

transformation, RML is aimed at expressing mathematical and logical

rules and transformations. It consists of a set of XML constructs that can
be added to an existing XML vocabulary in order to define RML rules for

that XML vocabulary. These rules can then be executed by RML tools to

transform the input XML according to the rule definition.
Rules defined in RML consist of an antecedent and a consequence. The

antecedent defines a pattern and variables in the pattern. Without the RML

constructs for variables this pattern would consist only of elements from

the chosen XML vocabulary. The pattern in the antecedent is matched
against the input XML. The variables specified with RML constructs are

much like the wildcard patterns like * and + and ? as used in well-known

tools like grep, but the RML variables also have a name that is used to

remember the matching input. If the matching of the pattern in the antece-

dent succeeds then the variables are bound to parts of the input XML and
they can be used in the consequence of an RML rule to produce output

XML.

The main benefit of RML is its ease of use. In XSLT, for example, it is
very hard to specify that the XML expression

<apply>

 <and/>

 <ci>P</ci>

 <ci>P</ci>

</apply>

meaning ‘P AND P’ in MathML, should be transformed into

<ci>P</ci>

according to the logic rule of ‘AND-elimination’. This is because XSLT is

targeted at transformations of single XML elements, not element patterns.
In RML+MathML the antecedent of the ‘AND-elimination’ rule above is

expressed as

<apply>

 <and/>

 <rml-tree name=‘A’ />

 <rml-use name=‘A’ />

</apply>

and the consequence as

<rml-use name=‘A’ />

where the tool applying this rule binds an XML tree to the variable ‘A’ at

<rml-tree name=‘A’ /> and then later uses that variable to match and

Impact-of-Change Analysis Tool 271

reproduce. In the above example variable A will be bound to
<ci>P</ci>.

Rules for static analyses such as those described in Sect. 8.3.1 can be

expressed in RML, and the RML rules engine embedded in the impact-of-
change analysis tool applies these to an XML representation of the archi-

tecture to arrive at the analysis results. As in the ArchiMate workbench de-

scribed in Sect. 10.4, the analysis tool is viewpoint based, and RML speci-

fications of viewpoints are used to extract the relevant views from an
underlying architecture model.

The following two figures illustrate the use of the analysis tool. Within

Fig. 10.13, three different views of a certain architecture are opened. Note
that the views overlap, which is allowed: the same model elements can be

included in more than one view.

If we select one of the model elements, we get the picture of Fig. 10.14.

Within this figure, all instances that are directly or indirectly related to the
selected model element are coloured red. The selected model element itself

is coloured dark red, in order to distinguish it from the model elements on

which it has impact.

Fig. 10.13. The impact-of-change analysis tool showing multiple views of the

same model.

272 Tool Support

Fig. 10.14. The impact of a selected model element.

10.7 Quantitative Analysis Tool

To validate the quantitative analysis techniques described in Chap. 8, a

prototype was built and applied in practice. This quantitative analysis pro-

totype consists of two components:

− The analysis component implements the analysis algorithms. It reads an

input model, normalises and analyses this model, and returns the origi-

nal model extended with the values that resulted from the calculations. It

can accept input models from file or from internal memory (string ob-

jects). The analysis logic is separated from the data source format by let-
ting the logic operate on an interface that represents a model. Different

data sources require different implementations of this interface, but the

analysis logic is not affected. Two data formats are currently supported.
The XML-based ‘entity-relation format’ matches the internal represen-

tation of data in the ArchiMate workbench. The ‘archicore format’ is

XMI based. The analysis component is packaged as a Java library (jar).

− The Web service component wraps the analysis component into a web

service that can be accessed remotely on the Internet by other applica-

Summary 273

tions. The Web service component is packaged as a J2EE Web applica-

tion. It is used for integration with the workbench. The interaction be-

tween the workbench and the Web service component is described in
Fig. 10.15. A user can start an analysis from the workbench by opening

a model and selecting the ‘Analyse content’ menu item. The workbench

submits the model to the Web service using the entity-relation data for-
mat (step 1). The Web service returns the analysis results (step 2), and

the workbench presents the results to the user.

Web Service Component

ArchiMate

Workbench
Analysis

Component
Web

service

interface
1 2

Fig. 10.15. Interaction between the quantitative analysis Web service component

and the ArchiMate Workbench.

10.8 Summary

In our vision, enterprise architecture will become a real-time tool for man-

agement and redesign of the enterprise for better performance, flexibility,

and agility. The alignment of business and IT will be managed through a
series of integrated views of the enterprise, each covering an appropriate

set of concerns for the stakeholder addressed. To realise this vision, tool

integration is of critical importance. We believe that tool support for enter-
prise architecture will not be realised by a single tool, but will be realised

by a combination of domain-specific tools and enterprise architecture tools

that add the enterprise architecture concepts and establish relations be-
tween domain-specific models.

The tool integration workbench we have presented is such an enterprise

architecture tool that is able to integrate domain-specific models. Leaving

existing modelling environments intact, the workbench allows the concur-
rent design of enterprise architecture domains: each domain may still be

designed using its own languages, tools, and techniques. More importantly,

with the ability to reason across domain boundaries the workbench intro-
duces an instrument for collaborative design.

By adopting the ArchiMate modelling language, the workbench not only

allows the integration of existing modelling languages, but provides a lan-
guage to communicate across domain boundaries as well. Moreover, the

274 Tool Support

workbench serves as a starting point for the analysis of enterprise archi-

tectures using generic analysis techniques that rely on the ArchiMate mod-

elling language.
The view designer we described serves as a proof of concept of the

separation of concerns, as it distinguishes the model, views of the model,

visualisation, and interaction aspects. Moreover, it also serves as proof of
concept for embedding of actions in models or views, which describe the

dynamics of a model as an integral part of its semantics. These dynamics

must be represented explicitly. The tool illustrates also that it is feasible to

develop a very generic and therefore very powerful visualisation engine,
which separates interaction from visualisation aspects. Moreover, the ac-

tions in models and views demonstrate the feasibility of interactive visuali-

sation. In the tool these dynamic changes, such as hiring a new employee,
are used via the visual interface. However, the changes could also be used

by other programs.

The future of tool support for enterprise architecture requires better in-
tegration between the various tools used in the enterprise architecture field.

The success of this integration depends heavily on standardisation organi-

sations and tool vendors. Vendors of modelling tools need to standardise

their modelling languages and concepts on the one hand, and their inter-
faces and storage formats on the other hand. Repository vendors need to

offer ‘model-intelligent’ repositories and standardised interfaces and ex-

change formats for models. The first steps in this direction have been
taken, e.g., the MOF standard for repositories, but there is still a long way

to go.

11 Case Studies

To obtain input from practice and to validate the concepts and techniques
explained in the previous chapters, several partner-specific case studies

have been executed. These have also served as an important means for

knowledge transfer from research to practice. This chapter will elaborate
on three of these case studies.

The first two cases, of ABP and ABN AMRO, focus on supporting an

architecture description of the current situation. In both cases, integration

of heterogeneous descriptions using different ‘languages’ is a central issue.
Furthermore, it exemplifies the use of viewpoints in practice and demon-

strates the ArchiMate tooling ideas.

The last case description concerns the Dutch Customs and Tax Admini-
stration, where ArchiMate has been used in designing and analysing the

technical infrastructure as part of a very large change programme. It shows

how processes, applications, and technical infrastructure can be connected

using the ‘service’ concept as a bridge, and visualised by applying the Ar-
chiMate viewpoints. Finally, it shows the usage of quantitative analysis

techniques to compute the application and infrastructural workloads.

11.1 Process and Application Visualisation at ABP

ABP is a pension fund for employees of the Dutch government and the

educational sector. ABP is one of the largest pension funds in Europe with

total assets of more than 156 billion euros serving more than two million
customers.

In the year 1998, triggered by the millennium problem, ABP realised

that a better grip was needed on the increasing complexity of the ICT

situation. ABP decided to start an information planning and architecture
program. Several products came out of this project, as follows:

− Architecture principles, such as:

• a process starts with a client and ends with a client;

• every process has a process owner;

• the organisation works client-oriented;

276 Case Studies

• ABP should not ask for certain information from clients if this infor-

mation is already available within the organisation.

− An architecture vocabulary.

− An information systems blueprint to guide ICT development.

Some of the examples below are in Dutch, because they are taken from

real-life data, but they serve to illustrate the type of diagram we are dis-
cussing.

11.1.1 ABP Meta-Model

ABP divides the architectural universe of discourse into five domains:
business, process, application, data and technology (Fig. 11.1). A further

detailing in the form of a conceptual meta-model is shown in Fig. 11.2.

Notice that the technology domain has not yet been covered by this meta-

model.
From a first rough comparison with the ArchiMate meta-model (see also

Fig. 5.4) the following differences can be identified:

− ABP uses a fixed decomposition of processes and systems, while Archi-

Mate uses a variable decomposition mechanism.

− The service concept is not used by ABP (although the process imple-

mentation concept comes close).

− The data domain of ABP has a more extensive set of concepts than the

data domain of ArchiMate.

− ABP has no organisational concepts in its meta-model.

Business

Process

Data Applications

Technology

Business

Process

Data Applications

Technology

Fig. 11.1. ABP architecture domain model.

Process and Application Visualisation at ABP 277

Constraint

Sub-

system

Database

part

Client

process

Business

sub-

function

Calculation

function

Business

unit

process

Process

implem.

Sub-

process

Business

function

Appli-

cation

System

Process

implem.

step

Attribute

type
Relation

Activity

Entity

type

Business

entity

type

Database

Domain

Event

Product

Fig. 11.2. Meta-model of ABP.

11.1.2 Case Essentials

ABP realised that keeping track of the current situation is an important

requisite for disciplined ICT management. For that reason, ABP selected a
repository in order to store metadata about ICT and in a later phase about

other domains. The meta-model of Fig. 11.2 is used as the database

scheme of this repository.

The repository data is disclosed via a Web portal. However, a graphical
presentation of the contents was missing, impeding the wider use of this

information. Presentations could be made manually of course, but this re-

quires a considerable effort. Therefore, ABP recognised a need for auto-
matic generation of visualisations. To this end, a tool was built that gener-

ates visualisations of the data about information systems, interfaces, and

databases. A typical example of such a diagram is shown in Fig. 11.3. For

more information about this first ArchiMate case, we refer to Iacob and
van Leeuwen (2004).

Being able to visualise system information, ABP’s next wish was to

connect systems data with process data. However, information about pro-

278 Case Studies

cesses was not yet stored in the repository: this process data was stored in

a process modelling tool and in a workflow tool. Thus, the goal of the case

was to integrate data from different sources and subsequently generate
visualisations. The tool infrastructure was to be based on the generic Ar-

chiMate concepts; hence an extra requirement was added, namely to map

the (relevant parts of the) ABP meta-model to the ArchiMate meta-model.

DUAS

DUAS_ALGEME
EN

DUAS_BASISR
EGISTRATIE

DUAS_FINANCIEE
L_AFHANDELEN

DUAS_MIS

DUAS_STANDA

ARD_QUERIES

DU

AANLEVERING_VAN
_VC_ZOETERMEER

FB01_/
_INTERFACE_NAA

R_SAP-R3

INTERFACE_NAAR
_SUU

SPONTANE_MEL

DERS_NR_VCZ SPONTANE_MEL

DERS_VCZ

VCG-T
REGU

ZOETERMEER__-

_BIV

OWNER

OWNER

OWNER

OWNER
OWNER

OWNER

OWNER

OWNER

OWNER

OUTPUT

OUTPUT

OUTPUT

INPUT

OUTPUT
OUTPUT

OUTPUT

Fig. 11.3. Example of a generated system structure diagram (partial view).

11.1.3 Concepts

To connect system and process information, only part of the ABP meta-

model was relevant (Fig. 11.4). The mapping of the ABP meta-model to

the ArchiMate meta-model was achieved via an intermediary bridging
level, a specialisation of the ArchiMate meta-model. Subtypes of process

and application component are introduced, and the service concept is

mapped onto process implementation.7

7 Actually, the relation between the concept process implementation step and the

ArchiMate concept of a service is an indirect relation: the existence of a process

implementation step is only an indicator that an application service is provided by

an application component.

Process and Application Visualisation at ABP 279

Sub-

system

Client

process

Business

unit

process

Process

implem.

Sub-

process

Appli-

cation

System

Process

implem.

step
Activity

Fig. 11.4. Relevant parts of the ABP meta-model.

ArchiMate namespace

ABP namespace

Deelproces Activiteit DeelsysteemApplicatieProcesimple -

mentatie -stap

Bedrijfs -

eenheidproces

Systeem
11..*11..*1..*1..* 0..*1..* 0..*1..* 10..*

Business

process

Business

subprocess

Business

activity

System

component

Subsystem

component

Application

component

Process Component

Service

Application

service

ArchiMate namespace

ABP namespace

Deelproces Activiteit DeelsysteemApplicatieProcesimple -

mentatie -stap

Bedrijfs -

eenheidproces

Systeem
11..*11..*1..*1..* 0..*1..* 0..*1..* 10..*

Business

process

Business

subprocess

Business

activity

System

component

Subsystem

component

Application

component

Process Component

Service

Application

service

Fig. 11.5. Connecting the ArchiMate meta-model with the ABP meta-model.

280 Case Studies

The concept mapping is depicted in Fig. 11.5. Note that the horizontal use

relations are derived relations, based on the more detailed usage of ser-

vices of an application component by a business activity.

11.1.4 Viewpoints

From the four types of design viewpoints identified in Sect. 7.5, the Com-

position and Support viewpoints are relevant to visualise the integrated

process and system information.

Composition Viewpoints

The Composition viewpoints focus on the structure of processes and sys-

tems. The ‘System component composition’ viewpoint shows a system
component or subsystem component and the subsystem components or ap-

plication components it consists of (Fig. 11.6). The ‘Business process com-

position’ viewpoint shows a business process or subprocess and the sub-

processes or activities it consists of (Fig. 11.7).

GP_AANWEN

DEN

AANWENDEN_

AUTOMATISCH

AANWENDEN_I

NTERACTIEF

BERICHT_VER

WERKING

VERZAMELEN_

MUTATIES_BNU

Fig. 11.6. A ‘system component composition’ view.

Process and Application Visualisation at ABP 281

proces

toekennen OP

automatisch

aanwenden

Betalen

informeren OP

65-6

intrekken

beeindigen

signaleren OP

SVB

rechtsgegevens

versneld

uitkeren

Verwerken

aanvraagformulier

Verwerken externe

pensioenverzekeraar

Verzamelen

mutatiesv0_1

Fig. 11.7. A ‘Business process composition’ view.

Support Viewpoints

The Support viewpoints show the usage relations between processes and

applications. The ‘Business process dependencies’ viewpoint shows a

business process, subprocess, or activity and the system, subsystem, or ap-
plication components it uses (Fig. 11.8). The ‘Application component use’

viewpoint shows a system, subsystem, or application component and the

business process, subprocess, or activities it is used by (Fig. 11.9). The
‘Process–component relation’ viewpoint zooms in on a particular use rela-

tion between a system, subsystem or application component and a business

process, subprocess, or activity (Fig. 11.10).

282 Case Studies

proces

toekennen OP

GP_AANWEN

DEN

GP_ONDERSTEUN

ENDE_FUNCTIES

Fig. 11.8. A ‘Business process dependencies’ view.

AANWENDEN_I
NTERACTIEF

Betaalgegevens Betalen

Fiscale situatie

Fiscale situatie
twk

Heroverweging

Bezwaar en Klacht

informeren 65+

informeren OP

65-6

Inhouding
derden

intrekken

beeindigen

signaleren OP

SVB

rechtsgegevens

Verwerken externe

pensioenverzekeraar

Verzamelen
mutatiesv0_1

Verzoek info

eigen situatie

Ziektekostenve
rzekering

Ziektekostenve

rzekering twk

Fig. 11.9. An ‘Application component use’ view.

Process and Application Visualisation at ABP 283

GP_AANWEN

DEN

proces wijziging

ziektekosten klant

AANWENDEN_I

NTERACTIEF

Betalen

Verzamelen

mutatiesv0_1

Ziektekostenve

rzekering

Ziektekostenve

rzekering twk

Fig. 11.10. A ‘Process–component relation’ view.

11.1.5 Design of the Visualiser

The overall design of the visualisation tool for ABP was based on the gen-

eral workbench architecture described in Sect. 10.4. A logical first step in
the integration of the different data sources mentioned in the previous sec-

tion would have been to add the process data to the repository and inte-

grate it with the systems data. However, integrating data from these differ-
ent sources proved to be a cumbersome affair because of model and

naming incompatibilities. Therefore, the decision was made to concentrate

on a subset of the data and use a temporary data store for the integrated
data. The data integration itself was done by a technical integration com-

ponent with data matching algorithms.

Collecting and integrating data are the first two steps of the process.

Subsequently, data is selected and presented by the Visio View Explorer
on the basis of user specifications. The high-level architecture of the visu-

aliser is depicted in Fig. 11.11. In this figure, the different phases in creat-

ing a visualisation are shown. The Visio View Explorer is worked out in
Fig. 11.12. The viewpoints are specified in an XML viewpoint configura-

tion file. Together, these two figures are a specialisation of the generic ar-

chitecture of the ArchiMate workbench shown in Fig. 10.4 and Fig. 10.7.

284 Case Studies

ABP Visualiser

Integrator V isio V iew Explorer

ABP
Viewpoint

specification

Collecting Integrating Selecting

ABP
Symbol

library

Presenting

User

Workflow
models

IPI

Interacting

Testbed
models

ABP
content

ABP

view

Fig. 11.11. High-level architecture of the ABP Visualiser.

Presenting

ABP

view

Visio View Explorer

OleDb

Content

Provider

Visio

View

Manager

Visio View

Presenter

ABP
Viewpoint

specification

ABP
Symbol

l ibrary

Designed

ArchiMate
content

Selecting

ABP

content

Used

ArchiMate
content

Fig. 11.12. Detailed design of the Visio View Explorer.

An important part of the generation of visualisations is creating the lay-
out of diagrams. Diagram layout addresses the problem of positioning

(possibly nested) boxes and connections on a canvas such that the resulting

diagram becomes intuitively acceptable.

In our approach we confined the layout space to a two-dimensional grid.
Such an approach is appropriate, because (1) a limited layout space speeds

up the layout algorithm, and (2) using a grid causes the resulting diagram

to have nicely arranged boxes. Roughly, our diagram layout strategy con-

Process and Application Visualisation at ABP 285

sists of (1) the estimation of the necessary grid size and (2) the actual po-

sitioning of boxes on the grid.

The actual positioning of boxes on the grid was done via a special pur-
pose optimisation strategy.8 It generates a layout by minimising the num-

ber of crossing connections, box–connection intersections, and the total

length of all connections. Furthermore, it is possible to fix boxes in a cer-
tain position. In this way we realised a ‘centred’ diagram with one centre

box and a ‘flow’ diagram with source and destination boxes.

A typical result is shown in Fig. 11.13: the use of a system component

by business processes. A user then can navigate through the visualisations.
For example, Fig. 11.13 shows a user zooming in on a particular relation,

resulting in Fig. 11.14.

Fig. 11.13. Example: the use of a system component by business processes.

8 The layout can also be created using general-purpose optimisation technology

(e.g., genetic algorithms). We experimented with both the former and the latter,

and finally opted for the latter. The main reason for opting for our own optimisa-

tion strategy was the problem of level interference: the quality of the visualisation

is influenced by the layout of nested boxes.

286 Case Studies

Fig. 11.14. Zooming in on a usage relation between a process and a system.

11.1.6 Case Study Results

The results of both case studies were received positively by ABP. Also,
ABP’s repository vendor recognised the added value of the case results

and enhanced its (newly released) visualisation engine with the insights

gained. Via the new repository functionality, ABP’s system owners are
now presented with visual representations of the systems for which they

are responsible.

11.2 Application Visualisation at ABN AMRO

ABN AMRO is a global bank with a staff of more than 100,000 working in

over 3,000 branches in more than 60 countries. The bank has a federated,

regionally distributed structure with its headquarters in the Netherlands.

The bank started working with architecture in the middle of the 1990s.
In 2000 this resulted in the first version of the Corporate IT Architecture

(CITA) method, which primarily defines the organisation of architecture

processes and a mandatory set of architecture concepts (in the form of an

Application Visualisation at ABN AMRO 287

architecture meta-model). Soon after, a large-scale implementation of this

method took place in the Netherlands. The experiences from that imple-

mentation and the setup of architecture departments in other countries led
to the first set of mandatory corporate policies and standards (P&S) on IT

Architecture, called CITA 2003. In 2004 implementation projects started

in the USA and Brazil.
One of the P&S of CITA 2003 defines a set of architecture concepts in

the form of an architecture meta-model. Another P&S specifies the com-

munication of architecture deliverables, based on viewpoints and view (de-

rived from the IEEE 1471 standard.

11.2.1 CITA Meta-Model

The CITA meta-model is shown in Fig. 11.159. The overall structure of

this meta-model is very similar to the ArchiMate meta-model, with the ser-
vice concept having a prominent role.

Fig. 11.15. ABN AMRO CITA meta-model.

Several differences from ArchiMate are also apparent. For example, al-

though in both meta-models the service concept is used, the meaning is

subtly different. In ArchiMate a service is a conceptual notion; it does not
have to correspond to a particular piece of software. In the CITA meta-

9 Actually, the business process quadrant is not yet mandatory.

288 Case Studies

model a service is an invokable piece of external functionality. The Ar-

chiMate service concept resembles more the CITA Business solution con-

cept and also its counterpart IT facility. Finally, the domain concept is im-
portant to assign domain owners and to group business solutions and

technical solutions. In ArchiMate one would use a grouping relation to

achieve this.
The case study described here primarily focuses on the business and ap-

plication architectures. Based on the above explanation, a mapping be-

tween the CITA concepts and the ArchiMate concepts is presented for

these quadrants in Table 11.1.

Table 11.1. Mapping of CITA meta-model to ArchiMate meta-model.

CITA concept ArchiMate concept

Business process Business process

Business activity Business activity

Business actor Business actor

IT facility Application service

Organisational domain Grouping relation

Application domain Grouping relation

Business solution Application service

Business application Application component + (External) service

Business service Application component + (Internal) service

Business application logic Application function

Business service logic Application function

Business application data Data object

(Enterprise) data Data object

11.2.2 Case Essentials

The case study has been carried out in close association with the CITA ar-

chitecture standard initiative and the work that the Business Unit C&CC

(Consumer & Commercial Clients) Brazil, locally known as Banco Real, is
doing in the architecture area.

The BU C&CC Brazil is in the process of setting up the architecture

profession within the organisation. Currently, it has the following ini-

tiatives:

Application Visualisation at ABN AMRO 289

− Introduce the domain architecture function within the organisation.

− Create an application architecture strategy.

− Create a migration plan for this strategy.

− Make an inventory of the ‘as is’ situation from an application architec-

tural point of view.

To support this last effort, BU C&CC Brazil collected information about

its information systems using a comprehensive questionnaire. To improve
the maintainability and accessibility of this data, a joint effort called

CABRI, was set up by the Corporate Centre of ABN AMRO Bank be-

tween BU Brazil and ArchiMate. The target for CABRI was to capture es-
sential architectural data from the questionnaire using CITA concept defi-

nitions, store them in a database, and generate visualisations based on

predefined viewpoints.

11.2.3 Concepts

The CITA standard incorporates the basic principle of a service-oriented

environment (SOE) in its meta-model by distinguishing general-purpose

service components from specific business application components. In
general this SOE is not yet implemented in full. The goal of applying the

CITA meta-model to describe the current state of affairs in the BU Brazil

was to identify the gap between the current state and the new application

architecture strategy. Several adjustments to the CITA meta-model had to
be introduced to show these potential areas for improvement (e.g., reusable

functionality and data, ownership of business applications and business

services).
Therefore, functionality of systems is split into external usable function-

ality (services) and internal functionality (application logic), and the data-

bases are divided into two groups, namely those that contain general-pur-
pose data (enterprise data) and those that contain local data (business

application data). In making this distinction, one has the situation that

business applications access enterprise data, and that business services ac-

cess local application data, a situation that the CITA meta-model does not
allow. In order not to lose this information, these two access relations need

to be added temporarily to the CITA meta-model. The extended subset of

the CITA meta-model used in this case study is shown in Fig. 11.16.

290 Case Studies

owner

name

description

Business Process

name

description

Business Actor

owner

name

description

requirements

IT Facility

name

description

pre-condition

post-condition

Business Activity

0..*

<< executes >>

<< use >>

owner

name

description

Business Solution

owner

name

description

Business Application

name

description

Business Application

Logic

name

description

Business Application

Data

owner

name

description

granularity level

Business Service

name

description

Business Service Logic

name

description

enterprise y/n

(Enterprise) Data

owner

name

description

Application Domain

provides

0..*
use

<< use >> << use >>

0..*
+ use

0..* + use0..*+ use

0..*
0..*

Business Architecture

Application Architecture

<< use >><< use >>

provides

owner

name

description

Organizational Domain

Fig. 11.16. Extended meta-model used in the case study.

Application Visualisation at ABN AMRO 291

Business Solution

Business Application

Business Application
Logic

Business Application
Data

Business Service

Business Service Logic

(Enterprise) Data

Subdomain

Application Domain

0..*
use

<< use >> << use >>

0..*
+ use

0..* + use0..*+ use

0..*
0..*

<< use >><< use >>

Domain

Organisational Domain

System

Macro
functionality

Subdomain

Database

Fig. 11.17. Mapping of inventory concepts to the CABRI meta-model.

In the BU Brazil questionnaire, the primary concepts used were Systems,

Macro Functionality, Database, Domain, and Sub-domain. The mapping
of these inventory concepts to the extended CITA meta-model is shown in

Fig. 11.17. This mapping was used to translate the inventory concepts into

CITA concepts, and also to facilitate communication with the Brazilian
employees.

11.2.4 Visualisation

To visualise the collected architectural information about the IT systems,

the following three types of viewpoints have been identified:

1. A global overview of the services and application components (land-

scape viewpoint).

292 Case Studies

2. Insight into the support of processes (process support viewpoint).

3. Insight into the relations between applications, services, logic, and data

(coherence and dependency viewpoint).

The viewpoint description consists of a textual explanation accompanied

by an example visualisation. The set of slightly modified ArchiMate sym-

bols used is shown in Table 11.2.10
Since the examples used to illustrate these viewpoints in the next sub-

sections are taken from real-life data, some of the text is in Brazilian Por-

tuguese.

Table 11.2. Concepts and their visual representation.

Concept Symbol Concept Symbol

Business process

Business

solution

Business actor

Business

application

Organisational

domain

Multiple
business

applications

Application

domain

Business

service

Business

application data

Business
application

logic

(Enterprise) data

Business
service

logic

Landscape Viewpoints

Landscape viewpoints show the overall application architecture, while ab-

stracting from detailed information within these applications. Three differ-

ent viewpoints have been used: Application domain landscape, Business

service landscape, and Business solution landscape.

10 The concepts for business activity and IT facility are not used in these visualisa-

tions.

Application Visualisation at ABN AMRO 293

– The ‘Application domain landscape’ viewpoint shows Organisational

domains and their containing Application domains. This viewpoint is

mainly concerned with visualising (levels of) ownership (Fig. 11.18).
– The ‘Business service landscape’ viewpoint shows one organisational

domain, with all its application domains, and all their business services

(Fig. 11.19).
– The ‘Business solution landscape’ shows one organisational domain,

with all its application domains, with all their business solutions (not

shown here, but analogous to the previous figures).

Contabilida

de

Recursos

Humanos

Administra

ção_Geral

Administração

Informa

s

Gerenc

Limites

Gestão

Contabilida

de

Gestão

troleG

Gestão e C

Captação

ProdutosS

ervBancari

os_Geral

Produtos e Servi

Cadastro

Cliente

Relaciona

mento

Relaciona

mento_Ger

al

Relacionamento com o Cliente

Operacion

al

Serviços

Comuns

Serviços Comuns e

Operacional

Fig. 11.18. An ‘Application domain landscape’ view (partial).

Formatar e
enviar dados para

processam ento
(RIE-MF4)

Receber

arquivo para
processamento

e enviar retorno
(RIE-MF5)

Enviar arquivo

para
processam ento

e receber retorno
(RIE-MF6)

Consultar

inform ações
(RIE-MF7)

Canais Internet

Tratar funções

operacionais do Call
Center (HB-MF3)

Tratar funções
administrativas

do Cal l Center
(HB-MF4)

Canais Assistidos

Canais de Distribuição

Fig. 11.19. A ‘Business service landscape’ view (partial).

294 Case Studies

Process Support Viewpoints

Process support viewpoints facilitate insight into the relation between

processes and applications.

Ca p tu ra T itu la re s
(A C C -B S 1)

Ca p tu ra

Ende re ço usand o
CEP (A CC -BS 2)

Prove r lista de pa í ses
(A C C -B S 3)

Prove r lista de
p ro fissões (A C C-BS4)

C a p tu ra d e D a d os

C he ca r

R estr içõe s
F inan ce ir as
(A C C -BS5)

C he ca r

C lien te no
C ad astro

(A C C -BS6)

V a l id a ç ã o d e D a d os

I nse r ir d ado s
do C lien te

no C ad astro
(A CC-BS7)

M a n u te n ç ã o n o

C a d a stro d e C l ie n te s

C
C

B
(A

A be

C o rr

A b e rtu ra d e C on ta C o rre n te

Fig. 11.20. A ‘Business activity–business service alignment’ view (partial).

Currently, only one viewpoint has been identified and worked out: the

‘Business activity–business service alignment’ viewpoint. This viewpoint

shows one central Business process, together with the Business activities
involved in that Business process. Each Business activity depicts the Busi-

ness services that are used by it (Fig. 11.20).

Coherence Viewpoints

Coherence viewpoints facilitate insight into the coherence of the applica-
tion architecture. They show how a particular element is used by other

elements. Three coherence viewpoints have been worked out: Business

service uses, Business application data uses, (Enterprise) data uses.

– The ‘Business service usage’ viewpoint shows one central business ser-

vice surrounded by the business applications and business actors that

use it (Fig. 11.21).

– The ‘Business application data usage’ viewpoint shows one central
business application data entity surrounded by the business application

logic entities and business service logic entities that use it (Fig. 11.22).

– The ‘(Enterprise) data usage’ viewpoint shows one central (enterprise)
data entity surrounded by the Business application logic entities and

Business service logic entities that use the central data entity (not

shown here, but analogous to Fig. 11.22).

Application Visualisation at ABN AMRO 295

Controle de

Recepção de

Lançamentos

Contábeis (CJ-MF5)

Controle

Gerencial de

Produção (PA)

Conta Corrente

(CN)

Sistema

Empréstimos

(SE)

Contabilidade

Integrada (CJ)

Crédito em

Liquidação (KL)

Resultado

Efetivo (RE)

Câmbio (OX)

Fig. 11.21. A ‘Business service usage’ view.

Saldos Contábeis

Analíticos /

Consol idados

(CJ-BD2)

Cálcu lo de Impostos

(CPMF próprio, ISS,

IOF) e Compulsório

(CJ-MF6)

Geração de

Informações Oficiais,

Cadocs (IFT, Estfin, etc)

e CBS (Amsterdam)

(CJ-MF3)

Controle de

Recepção de

Lançamentos

Contábeis (CJ-MF5)

Geração de

Saldos a partir dos

Lançamentos

(CJ-MF2)

Consultas On-Line /

Relatórios Contábeis

(CJ-MF4)

Fig. 11.22. A ‘Business application data usage’ view.

296 Case Studies

Dependency Viewpoints

Dependency viewpoints facilitate insight into the dependencies of the ap-

plication architecture. They show a central entity together with certain en-

tities on which this central entity depends. The following viewpoints have
been identified: Business application dependencies, Business application

logic dependencies, and Business service dependencies.

− The ‘Business application dependencies’ viewpoint shows one central

Business application surrounded by the Business services that are used

by that central Business application (Fig. 11.23).

− The ‘Business application logic dependencies’ viewpoint shows one

central Business application logic entity surrounded by the Business ap-

plication logic entities, Business application data entities, and (Enter-

prise) data entities that are used by the central entity (analogous to Fig.
11.23).

− The ‘Business service dependencies’ viewpoint shows one central Busi-

ness service entity surrounded by the Business service entities, Business

application data entities, and (Enterprise) data entities that are used by
the central entity (analogous to Fig. 11.23).

Contabilidade

Integrada (CJ)

Gerar
Movimento
Contábil /
Tributos / IFT

(OR-MF2)

Contabilizar
e conciliar
(SE-MF03)

Consulta
Centro de
Responsabilidade

(GJ-AD2)

Gerar

Movimento
para
Contabilização
(TR-MF3)

Fig. 11.23. A ‘Business application dependencies’ view.

Integrated Design at the Dutch Tax and Customs Administration 297

11.2.5 Tool Design and Results

As in the case of ABP, the ABN AMRO case study uses the generic tool-

ing infrastructure described in Chap. 10. The way the tool is used in this
case is shown in Fig. 11.24. Input of system information is not yet auto-

mated, since this is only available in the form of textual documents.

ABN AMRO Visualiser

Database

component
Visio V iew Explorer

ABN AMRO

Viewpoint

specification

Collecting Integratin g Selectin g

ABN AMRO

Symbol

l ibrary

Presen ting

User

Interactin g

ABN AMRO

conten t
ABN AMRO

view
System

descriptions

Collector

Fig. 11.24. Tool design.

The practical results obtained with this visualisation infrastructure
helped to clarify various misunderstandings and inconsistencies in the sys-

tems landscape. The visualisations are widely and interactively used in

discussions about the current and future application architecture.
ABN AMRO BU Brazil decided to keep using the tool and implement it

in the development organisation. It will capture systems that have not yet

been assessed and will maintain the data already captured.

11.3 Integrated Design at the Dutch Tax and Customs
Administration

The Dutch Tax and Customs Administration (abbreviated TCA in the se-
quel) has a long history of continuously improving its organisation of proc-

ess and ICT development. As early as the beginning of the 1980s, the ICT

department started working with architecture. In the TCA architecture
plays a prominent role, which is also exemplified by a total staff of over

100 architects. The importance of architecture has also increased the need

298 Case Studies

for an enterprise architecture language to connect different architecture

domains.

11.3.1 Case Essentials

In recent years, the organisation of social security in the Netherlands has

changed dramatically. The goal is to arrive at a situation with a central

contact point for organisations and citizens, and with unique ‘authentic’

data sources.
Within this context, the collection of employees’ social security premi-

ums is transferred from UWV (the central social security organisation) to

the TCA. This joint project of TCA and UWV is called SUB (‘Samen-
werking UWV–Belastingdienst’).

A major challenge in this project is to handle enormous flows of data

within and among the different organisations. This concerns more than
600,000 payroll tax returns each month, a large proportion of which arrive

within a peak period of a couple of days. Moreover, it is expected that a

substantial proportion of these tax returns need to be sent back for correc-

tion. Such requirements need to be addressed early on in the project.
These aspects of this case study made it an ideal proving ground for the

modelling language, viewpoints, and performance analysis techniques de-

scribed in previous chapters. In the next subsections, we will show how the
different aspects of the business processes, applications, and infrastructure

were modelled in a coherent and consistent way, and also show how the

quantitative analysis techniques were used in the capacity planning of the
infrastructure.

11.3.2 Views

By means of a number of different views, based on the design viewpoints

described in Sect. 7.5, the SUB information system architecture is pre-
sented from the perspective of the TCA. We have chosen not to show a

model of SUB as a whole; instead, we start with a broad perspective and

go into detail for a number of specific processes.

Subsequently, models are presented that describe the SUB business
processes (viewpoint Process cooperation), the SUB application support

for these processes (viewpoint Application usage), and the infrastructure

support for the applications (viewpoint Infrastructure support).11

11 The actual design of SUB further evolved after completion of the case study.

Integrated Design at the Dutch Tax and Customs Administration 299

Process Cooperation: Client-to-Client Processes

The process architecture, depicted in Fig. 11.25, shows the most important

client-to-client processes within the scope of SUB. Each process is initi-

ated by a trigger. These triggers fall in one the following categories:

− time triggers, indicating that a process is executed periodically;

− message triggers, indicating that an incoming message initiates a proc-

ess;

− signal triggers, indicating that an incoming signal initiates a process.

For each trigger, a frequency is specified, expressed in terms of the average

number of ‘firings’ per month. Furthermore, the process architecture

shows the most important messages that flow between the processes.

Provide return/
paym ent forms

Process
payroll tax

return

Payment
processing

Process
signals and risks

Recalculate
nominative

part

Payroll tax
return msg.

Correction
request

rejection

Return
form

Correction
message

external
signal

Col lections
administration

F=600 000/month

F=60 000/month

F=1/month

F=1/month

(F=360 000/month)

(F=60 000/month)

Payment
form

Fig. 11.25. Overview of the SUB Client-to-client processes.

Obviously, each of the above-mentioned client-to-client processes can be
described in more detail by further specifying the subprocesses of which

they consist, the actors that are involved, the incoming and outgoing mes-

sages, and the databases that are being used. Next, we present a more de-
tailed decomposition of the process ‘Payroll tax return’ (Fig. 11.26) from

the overall SUB process architecture. The model shows, among others,

which part of the process is executed by the TCA and which by UWV.

300 Case Studies

Process payroll tax return

Chain “Process payroll tax return”

TCA

Chain “Process payroll tax return”

UWV
Payroll tax

return

Correction

request

Receive tax

return

Collections

administration

Levyings

administration

Confirmation
Levy

Notification

rejection

Notification

error

Tax and Customs

Admin istra tion

Notify
Process

corrections

Relations

information

Handle

received

rax returns

Policy

administration
Correction

requests

administration

UWV

F=660 000/month

Company/

Agent

Fig. 11.26. Client-to-client process ‘Payroll tax return’.

Application Usage

Going one level of detail deeper, we now zoom in on the ‘Receive tax re-
turn’ subprocess. The model of this subprocess and the corresponding ap-

plication support are shown in Fig. 11.27. A payroll tax return (PTR) can

be submitted in two main formats: on paper or electronically. The elec-
tronic tax returns have three possible formats: Web-based messages, small

messages sent via SMTP, and large messages sent via FTP. The model

shows the expected distribution of the total number of messages over these

different formats. The first part of the ‘Receive tax return’ process trans-
forms these formats into a common, medium-independent format. We will

refer to this phase of the process as ‘Medium-specific processing’. The

second phase of the ‘Receive tax return’ process, ‘Medium-independent
processing’, processes all the payroll tax returns in the same way, irre-

spective of their original format.12

First, we detail the ‘Medium-independent processing’ phase. In the ap-
plication architecture, the behaviour of each application component is par-

titioned into one or more application functions (denoting units of function-

12 The applications shown in Fig. 11.27 with a lighter colour, i.e., BvR, BBA,

WCA, and Notification, are mainly databases that are used in the processes, but

play a secondary role. They are omitted in the more detailed models and the analy-

sis.

Integrated Design at the Dutch Tax and Customs Administration 301

ality used within the business processes) and application interactions to

model communication between application components, as well as the data

stores involved. Part of the resulting model is shown in Fig. 11.28.

Receive t

Receive electronic PTR msg.

Nominative

data

FOS

MOS

Temporary

storage file

DCS

FOL

convert

Receive paper PTR msg.

Receive

PTR

document

Receive

PTR small

Receive

PTR large

Receive

PTR web

large:

0,17 %

Scan

document

decode
small:

98,10%

web:

1,72 %

OB2000

Payroll tax

return msg.

Paper PTR

Electronic

PTR

Legal

archive

F = 22 000/month

F = 638 000/month

FOS

external

FOS

internal

Fig. 11.27. Application and business process architecture for ‘Receive tax return’

(partial view).

302 Case Studies

Medium-independent processing

Message

Store

FOS Intern

Structural conversion

convert receive

check

PTR file

Receive

message

XML-
message

conversion

& splitting

Store

message Remove

message

Temporary

storage file

Collective

part
Nominative

part

Nominative

l ines

Collective

lines
Medium

independent

PTR

PTR data

Fig. 11.28. Application support for ‘Medium-independent processing’ (partial
view).

Infrastructure Usage

The next step is to take a closer look at the infrastructure support for the

application architecture. We first illustrate the modelling approach for the

‘Medium-independent processing’. A layer of infrastructure services sup-

ports the various application functions. We distinguish three types of infra-
structural services:

− data storage and access services;

− processing services;

− communication services.

Integrated Design at the Dutch Tax and Customs Administration 303

Data storage and access services are realised by, for example, a database

management system. Processing services are typically realised by an exe-

cution environment or application server. Communication services support
messaging between applications which is realised by, for instance, mes-

sage queuing software.

FOS Internal

XML-message conversion &

splitting

APFOSU4-FOS internal

production

message

 switch

QM

XIB

MQ Gate cluster

Message

Store Store

message

MQ

messaging

DB

access

MB

Unix Server -

Message

Store

DBMS

QM

Ch.

FOS->

Msg. store

message

 broker

Remove

message

Ch.

AVANTi ->

Msg. Store

MQ

messaging

Temp. storage

Collective

part

Nominative

part

Message

admin.

Fig. 11.29. Application and infrastructure architecture for ‘Medium independent

processing’ (partial view).

304 Case Studies

In this case, WebSphere MQ technology is used, where message brokers

and message switches make use of functionality provided by queue man-

agers. In MQ, communication services are realised by so-called channels.
A channel between two devices is modelled as a communication path that

represents a collaboration of two QM system software components, one for

the sender and one for the receiver.

Receive small electronic PTR

MOS

MTA in P44 in

BAPI

unpack

MQ

dispatch

Secu rity and decryption
Mail handling

Arch ive

Decode and

authorise

Receive

msg.

Header

and body

Process msg.

BAPI

out-buffer

BAPI

in-buffer

MTA

buffer

PTR

message

F=626 000/month

PTR data

OB2000
Sybase

access

Ch. MOS

->FOS

APMOSU7-MOS

production

Sybase

DBMS

BS

App.

hosting

Execution

environment

QM

APFOSU4-FOS

internal production

QM

FOS internal

Medium

independent

PTR

Message

switch

Discards

administration

P44

discards-

handl ing

MQ

messaging

Fig. 11.30. ‘Receiving small electronic payroll tax returns’ architecture.

As mentioned above, the first part of the ‘Return tax returns’ process,
‘Medium-specific processing’, receives payroll tax returns from four in-

formation sources. Following the same modelling guidelines as in the case

Integrated Design at the Dutch Tax and Customs Administration 305

of the ‘Medium-specific processing’ part, we present in Fig. 11.30 the

whole layered architecture (i.e., business process, application, and infra-

structure architecture) of ‘Receiving small electronic payroll tax returns’.
The models for the other three sources of tax returns will not be shown

here, but they can be constructed in a similar way.

Infrastructure Support

So far, we have adopted a top-down approach: starting with the business
processes, we first identified the needed application support; then, we

specified the infrastructure needed to run the applications. In this view, we

work bottom-up: we show the complete infrastructure within the scope of
the ‘Receive tax return’ process for SUB, and show which of the infra-

structure services are used by which of the applications. Part of this view

for the ‘Receive tax return’ process is shown in Fig. 11.31.

MQ Gate cluster

 OB2000
 Sybase
 access

APMOSU7-MOS

production

Sybase

DBMS

BS

App.
hosting

Execution
environment

Message

 sw itch

Ch. DCS
->FOS

Docum ent

Conversion System

MQ

m essaging

QM

BS

Message

 sw itch
App.

hosting

Execution

environm ent
Ch. FOL
->FOS

FOL – Online
Form s (2 of 3)

MQ

messaging

QM

BS

Message

 sw itch

App.

hosting

Web

Appl ication
server

MOS

DCS

FOL

Discards

Admin.

Fig. 11.31. Part of the SUB infrastructure support for applications.

306 Case Studies

11.3.3 Performance Analysis

This section illustrates the quantitative analysis of the model presented in

the views in the previous sections, using the analysis approach described in
Chap. 8. The results can be used to get an indication of the capacity that is

required for the different resources in the infrastructure layer.

Analysis Approach

For the given type of analysis, the following input data is required:

− For each trigger the arrival frequency (average and possibly also peaks).

− For each process, function, or service the average service time.

− For each actor, component, or device the capacity.

Given these inputs, we can estimate the following performance measures:

− For each concept in the model (service, process, function, and resource)

the throughput: the number of inputs/outputs that is to be processed per

time unit. This is the workload that is imposed by the processes.

− For each actor, component, and device its utilisation: the percentage of

time that it is active.

− For each process, function, and service the average processing time and

response time.

− For each client-to-client process the average completion time.

The analysis approach is portrayed in Fig. 11.32. Starting with the arrival

frequencies on the business process level, the workload (throughput) for all
model elements in the layers below is calculated (top-down analysis). To-

gether with the given service time of the infrastructure services, the utilisa-

tion of the resources, and the processing and response times of the proc-
esses, functions, and services are calculated (bottom-up analysis). In Sect.

8.2 there is a detailed description of the analysis algorithms.

Technical infrastructure

Infrastructure services

Applications

Application

 services

Workload

(throughput)

Performance

measures

((utilisation
 response time)

,

Business processes

Fig. 11.32. Overview of the analysis approach.

Integrated Design at the Dutch Tax and Customs Administration 307

Workload Calculations (Top-Down)

Some of the results of the workload calculations are shown in Fig. 11.33

(in italics). These figures reflect the workload of applications and infra-

structure imposed by the subprocess Medium independent processing,
given an average monthly supply of 660,000 payroll tax returns. This

workload is the basis for further performance analysis.

Medium-independent processing

Structural conversion

convert

PTR file

Nominative

lines

Collective

lines

Medium

independent

PTR

F=660 000/m th 660 000/mth

660 000/mth 6

FOS Intern

XML-message

conversion & spl itting

APFOSU4-FOS internal
production

Message
sw itch

QM QQM

XIB

MQ
m essag

Message
Store

Store
message

MQ
messaging

DB
access

MB

Unix Server -
Message Store

Message

database

QM

Ch.

FOS->

Msg. store

Message
broker

Rem ove
message

Ch.

AVANTi ->

Msg. Store

MQ
m essaging

Temp. storage

Collective

part

Nominative

part

660 000/mth

660 000/mth

660 000/mth

660 000/mth

66 000/mth

66 00

660 000/m

660 000/mth

66 000/mth

66 000/mth

1 320

1 320 000/mth660 000/mth

660 000/mth

726 000/mth

726 000/mth

1 452 000/mth

1 320 000/mth

3 498 000/mth

660 000/mth

660 000/mth

1 320 000/mth

1 980 000/mth

PTR data

660 000/mth

Ch. FOS

AVANT

Fig. 11.33. Throughputs for the subprocess ‘Medium-independent processing’.

308 Case Studies

626 000/mth22 000/mth

66 000/mth

10 915/mth 10 915/mth

10 915/mth

10 915/mth

MQ Gate cluster

OB2000

APMOS

produ

App.

hosting

Execution

environment
Ch. DCS

->FOS

Document

Conversion System

MQ

messaging

QM

BS

Message

switch

App.

hosting

Execution

environment
Ch. FOL

->FOS

FOL – Online

Forms (2 of 3)

MQ

messaging

QM

BS

Message

switch

App.

hosting

Web

Application

server

32 745/mth

22 000/mth

10 915/mth

10 915/mth

22 000/mth 22 000/mth

626 000/mth

626 000/mth

3 881 20

22 000/mth

22 000/mth

22 000/mth

66 000/mth

10 915/mth10 915/mth

Fig. 11.34. Total workload of the SUB infrastructure (partial view).

To obtain estimates of the total required infrastructure capacities, the

same calculations also have to be made for the different Medium-specific

processing parts of the Receive tax return process. The sum of the work-
loads from all the subprocesses results in a total workload for the SUB in-

frastructure, part of which is shown in Fig. 11.34. Similar calculations

could be carried out for peak situations.

Performance Measure Calculations (Bottom-Up)

To calculate performance measures such as response times and utilisation,

service times are also needed as input data. These figures are often difficult

to establish, especially in a design phase of a project when systems are not
yet operational. Nevertheless, based on technical documentation and avail-

able historical information (e.g., performance tests) of existing system

components, and together with experts on the matter, reasonable estimates
of these numbers could be made.

The numerical results of the bottom-up analysis of the process ‘Receiv-

ing small electronic payroll tax returns’ are given in Fig. 11.35. According

to these figures the utilisation of the resources for an average workload is
already quite high; this means that at peak loads the resources will almost

Integrated Design at the Dutch Tax and Customs Administration 309

certainly be overloaded. A solution to this problem may be to add addi-

tional resources or to increase the capacity of the resources. Further analy-

sis can help to determine by how much the capacity needs to be increased.

MOS

MTA in P44 in BAPI unpack MQ dispatch

Archive

Decode and

authorise

Receive

msg.
Process msg.

F=626 000/mth

APMOSU7-MOS production

MQ

messaging

send

App.

hosting

APFOSU4-FOS

in ternal production

Message

switch

X = 626 000/mth

T = 0,11 s

R = 0,27 s

X = 1 252 000/mth

T = 0,14 s

R = 0,35 s

X = 626 000/mth

T = 0,14 s

R = 0,35 s

X = 626 000/mth

T = 0,06 s

R = 0,15 s

X = 46 950/mth

T = 1,00 s

R = 1,58 s

X = 1 940 600/mth

T = 0,09 s

R = 0,14 s

X = 2 613 550/

mth X = 626 000/mth

F=626 000/mth

F=626 000/mth

F=626 000/mth

MQ

messaging

receive

X = 626 000/mth

T = 0,018 s

R = 0,018 s

U=60%

U=37% U=1,8%

n=1n=1n=0.1n=1n=1n=0,075

S = 0,018 sS = 0,018 sS = 0,09 sS = 1,0 s

X = 626 000/mth

T = 0,018 s

R = 0,028 s

T = 0,28 s T = 0,35 s

T = 0,35 s

T = 0,35 s

F=626 000/mth

F=626 000/mth

Fig. 11.35. Utilisation and response times for ‘Receive tax returns (small)’.

11.3.4 Case Study Results

This case study shows that the ArchiMate language is suitable for model-

ling the relevant aspects of the technical architecture, as well as the rela-
tions of this architecture to other architectures. The resulting models make

the realisation of generic infrastructure services explicit. Quantitative

analysis offered a clear view of how activities at the business process im-

pose a workload on the application and infrastructure levels, thus provid-
ing a basis for capacity planning of the infrastructure. Performing these

quantitative analyses at an early stage, considerably helps the realisation of

the desired performance characteristics of the target system.

310 Case Studies

11.4 Summary

The case studies discussed in the previous sections represent only a small

part of all the applications and validations of the methods and techniques
presented in this book. However, they clearly show the feasibility and

practical value of these results in various real-life settings. Both the mod-

elling language and the visualisation and analysis techniques have shown
their merit in providing more insight into complex, wide-ranging enter-

prise architectures.

12 Beyond Enterprise Architecture

In the previous chapters we have discussed enterprise architecture model-
ling and analysis, its roots and foundations, and have seen enterprise ar-

chitecture being applied in a number of industrial cases. The practice and

possible added value have clearly been put forward.
This chapter will help you to put architecture, enterprise architecture,

and the architect him- or herself into perspective. Where does it all come

from and where does it lead?

12.1 The World Before Enterprise Architecture

This book is on enterprise architecture. Although the term has become

quite common, enterprise architecture has only recently reached a level

where it is well understood and practically applicable. As we discussed in
Chap. 2, Zachman (1987) can be seen as one of the first authors to define

the concept in its full richness. But it took until the end of the twentieth

century for enterprise architecture to be widely accepted. Why did this take
so long?

Enterprise architecture is very much a holistic approach to the design of

organisations. All different domains in enterprise design meet: organisa-

tion, information, systems, products, processes, and applications. Under-
standing the individual domains is complicated in itself, let alone their in-

terdependencies. We have to look at this from both a business and a

technical perspective.
The 1980s and 1990s of the last century have seen a focus on changing

the way businesses operate. Business process redesign and business pro-

cess re-engineering were used to rationalise processes and products. In the

past, the industrial revolution automated many production activities in
companies. Work shifted from ‘blue-collar work’ to ‘white-collar work’.

Improving the performance of white-collar work cannot be achieved by

simply automating it, but by working smarter, enabled by information
technology. As Hammer (1990) stated in the title of his provocative article

on business process reengineering: ‘Don’t automate, obliterate’, i.e., radi-

cally rethink illogical business activities, which are there because nobody

312 Beyond Enterprise Architecture

dares to challenge them. Introduce new information technology hand in

hand with new business process ideas. The capabilities of information

technology enable this smarter way of working (Davenport and Short
1990).

Another reason for changing business processes was customer focus.

Companies need to compete and excel to keep and expand their customer
base. The customer demands fast services, cost-efficiency, high, standard-

ised quality, and flexibility. Ultimately, cost, flexibility, improvement, and

standardisation of quality need a process focus. Looking at the business ac-

tivities serving the end customer, they appeared to be partitioned on the
basis of, amongst others, historical evolution and political power struc-

tures, existing departmental boundaries, and physical location and geo-

graphical borders.
Given the complexity and risks involved in changing an organisational

way of working, a business process engineering approach is needed. Deal-

ing with design complexity demands abstraction using architectural meth-
ods and tools. By the end of the last century, different methods and tools

had been developed to assist organisations in optimising processes and in-

troducing customer focus. Business process redesign has moved from an

ill-understood skill, with a substantial failure rate, to a repeatable exercise
(see, e.g., Franken et al. 2000), in which business process modelling and

business process architecture play an important role.

From a technical perspective, modelling and architecture have a longer
history. In hardware design, the notion of architecture has been in use

since the 1960s, pioneered by the likes of Amdahl, Blaauw, and Brooks in

their design of the IBM S/360 mainframe (IBM Corp. 1964). In their re-
search note Amdahl et al. (1964) give probably the first definition of archi-

tecture in the IT world:

The term architecture is used here to describe the attributes of a system as seen by

the programmer, i.e., the conceptual structure and functional behavior, as distinct

from the organization of the data flow and controls, the logical design, and the

physical implementation.’

Information modelling has also been a common practice for a long time.
Entity–relationship diagrams were developed in the 1970s. Nowadays, the

class diagrams of UML form a crucial element in object-oriented analysis

and design. Beyond information modelling, the picture is less clear. The
UML standard, as was discussed in Chap. 2, provides many ingredients for

this, but in practice we come across many proprietary and informal tech-

niques.
Nevertheless, the role of architecture has been much more important on

the technical side than from an organisational or business perspective. One

The Advent of Enterprise Architecture 313

reason for this is that the importance of architecture in this field is much

more obvious than in business processes: the performance and suitability

of applications and systems is immediately visible, and can lead to bad
publicity and unsatisfied users; it is always convenient to blame ‘the com-

puter’. In the press we regularly see evidence of this phenomenon. There-

fore, robustness, scalability, reliability, and feasibility have become key
concepts in system analysis and design.

For business processes, bad performance is much more accepted. When

does the fact that it takes 12–18 weeks to settle a building permit, or that

some insurers have a backlog of almost half a year in their pension admini-
strations, get into a newspaper? Oddly enough, this type of performance

was accepted for ages, and hence the need for business process architecture

was barely felt. But times have changed.

12.2 The Advent of Enterprise Architecture

Architecture is progressively seen not just as a tactical instrument for de-

signing an organisation’s systems and processes, but as a strategic tool for
enterprise governance. Yet, the architecture practice within most organisa-

tions is still focused on design and has not yet progressed to the level of

coordination, let alone to the level of enterprise governance. Furthermore,

the term ‘architecture’ and the role of the ‘architect’ are heavily over-
loaded and have faced serious inflation.

To really profit from the strategic potential of enterprise architecture, an

organisation needs to optimise the skills, methods, and tools of its ar-
chitects, and give them the right position in the organisation. In this book,

we have mainly concentrated on the first issue. However, without a proper

organisational embedding of architectural practice, the enterprise will reap
none of its potential benefits.

Many organisations struggle with this problem. On the one hand, a close

relationship with business units and systems’ development is crucial for a

detailed understanding of the organisation. On the other hand, a certain
distance and external authority is important to keep an overview of differ-

ent projects, processes, and changes: the essence of architecture. In many

companies, this has resulted in organisational units such as ‘corporate ar-
chitecture’ or ‘enterprise architecture’ that are either overwhelmed by the

continuous interaction with business units, or, worse, considered an ‘ivory

tower’ and play a marginal role.
The acceptance of the role of the enterprise architect depends directly on

its perceived added value. As Fowler (2003) states, this added value does

not come from ‘drawing pictures’, but is based on shortened development

314 Beyond Enterprise Architecture

times, reduced budget overspending, and increased flexibility in the or-

ganisation as a whole. Fowler shows that is it possible to play such a role,

if skilled architects, supported by effective tools, apply the right tech-
niques. We are very close to that stage, but have not reached it yet.

The organisations that participate in the ArchiMate project are to a cer-

tain extent forerunners in this new era, and already face the difficulties of
this struggle. In the end, there is no real choice: the complexity and speed

of change of society requires enterprise architecture in order to keep up

with that pace. Enterprise architects will have to play a leading role, unless

organisations are willing to spend too much money or not to live up to
their customers’ expectations.

A key element in the recognition of the role of enterprise architecture is

that we should be able to quantify the impact of architecture, both finan-
cially as well as in terms of the organisational performance. Unfortunately,

it is difficult to quantify precisely the benefits of a method of working that

is so wide ranging as enterprise architecture. Until recently, hard evidence
for the value of enterprise architecture has been hard to come by, beyond a

certain ‘gut feeling’ and qualitative arguments. But has anyone ever asked

a CEO to quantify his or her added value for an organisation? And evi-

dence is mounting, as more and more case studies become available that
show real added value, such as Volkswagen of America (Garrett 2004) or

the Dutch social security organisation UWV (Bayens and Commandeur

2004), just to name a couple. Furthermore, enterprise architectures them-
selves are increasingly used as an instrument to assess the benefits of IT

projects (see, e.g., Romani 2003).

12.3 Beyond Enterprise Architecture

So enterprise architecture is here to stay. When architecture and architects

have become well established and have shown serious added value, their

role will become that of both enterprise visionary and enterprise supervi-

sor. The architect will be a linking pin between CIO, CTO, and CEO and
the organisation, translator of strategic choices to tactical decisions and

changes, protector of the conceptual integrity of the enterprise’s processes

and systems, and guardian of the relationship between the enterprise and
its environment: he or she will be both guard and guardian angel. How-

ever, new challenges for enterprise architects are just beyond the horizon.

Customers have become increasingly demanding and product innova-
tion rates are high. Globalisation of markets and the availability of new

electronic media lead to new players entering existing markets, disinter-

mediation, and an ever higher competitive pressure to work more effec-

Beyond Enterprise Architecture 315

tively, reduce costs, and become more flexible. The advent of e-business

and e-government has definitely changed the way organisations and cross-

organisational processes function.
E-business introduces new business models and new ways of thinking.

According to Venkatraman (1995), IT-enabled business transformation can

take place at different levels, ranging from local optimisations to radical
business change or even business network redefinition, in e-business-like

transformations (Fig. 12.1) .

Localized exploitation

Internal Integration

Business network redesign

Business process redesign

Business scope redefinition

Potential benefits

D
e

g
r
e
e

 o
f

b
u

s
in

e
s

s
 t

r
a

n
s

fo
r
m

a
ti

o
n

Fig. 12.1. Transformation levels according to Venkatraman (1995).

E-business has changed our view of organisations, moving from an en-

terprise perspective to a network perspective (see, e.g., Dai and Kauffman

2002). At the ICIS 2000 conference, a debate was organised around the

question whether the trend towards e-business calls for changes in the fun-
damental concepts of information systems (Alter et al. 2001). The debate

did not lead to a clear conclusion, although the audience in general stated

that no new fundamental concepts were needed to describe systems. Possi-
ble, new ways of building systems were needed, and, therefore, a new role

of enterprise architecture.

The future scope of an enterprise architect will be the extended enter-
prise, or business network, in which the enterprise operates (Kalakote and

Robinson 2001, Hoque 2000). Business network architecture will become

a new playing field, determining the borders of business models and busi-

ness network design. Modelling techniques for this type of architecture
may change, but more in the sense that different views will be used rather

than entirely new concepts. The ArchiMate modelling language was origi-

nally inspired by business network concepts, such as those described in

316 Beyond Enterprise Architecture

Steen et al. (2002). The case study described in Sect. 11.3 already indicates

elements of this new perspective, as it crosses the border between the Tax

and Customs Administration and the UWV organisation.
In several respects, networked business architecture and design differ

from ‘traditional’ enterprise architecture (if there is such a thing). As stated

in Janssen et al. (2003), the networked business architect should:

− Start the development of business services supporting cross-company

cooperation from a business network perspective, not from the perspec-

tive of a single organisation. This implies that in principle many differ-

ent actors involved can fulfil different roles at the same time, and that
many relationships co-exist within the network.

− Emphasise the roles of organisations in the business network with re-

spect to each other, instead of the actual actors themselves.

− Link cooperation between companies to internal business processes and

existing (legacy) systems.

− Assess the consequences and prerequisites of technology for business

processes and cross-company cooperation.

− Effectively allow knowledge on standards and available components to

be gathered and reused, preferably supporting component-based devel-

opment and reuse, designing for flexibility.

More importantly, the role of the enterprise architect as a ‘great communi-
cator’ will grow, and even enter the realm of the ‘great negotiator’, as ar-

chitectural decisions move beyond the reach of a single organisational unit

or managerial entity. This will have serious consequences for the skills and

tools needed for the ‘business network architect’. The architect will have
to guard the interests of the different organisations involved, balancing co-

operation in the network, organisational impact, and individual benefits.

The architect’s role between guard and guardian angel will provide a deci-
sive competitive edge to organisations in this dynamic world. Architecture

will transcend the borders of the enterprise, becoming ‘beyond enterprise’

architecture.

Appendix A – Language Meta-Model

A summary of the ArchiMate concepts and their relationships is shown in
Fig. A.1.

Business
actor

Business
role

Appl ication
com ponent

Business object

Artifact

Value

Application
service

Application

interface

Infrastructure

interface

Infrastructure

service

Node

Device
System
software

Network

Business

service

Event

Business

interface

Business
process /

function /

interaction

Business

Application

Application

Technology

Data object

Contract

Product

Representation

Communication

path

Application

function /

interaction

Business

collaboration

Application
col laboration

Fig. A.1. Overview of the ArchiMate concepts and main relationships.

Appendix B – Graphical Notation

The symbols of the ArchiMate language are shown in Fig. B.1. Note that
several concepts can be denoted either by a ‘box’ with an icon, or by the

icon by itself.

Meaning

Value

Object

Representation

Artifact

Process/

function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device

System

software

Network

Group

Product

Communication

path

Specialisation

Composition

Aggregation

Assignment

Realisation

Triggering

Use

Access

Association

Junction

Flow

Fig. B.1. Symbols of the ArchiMate language.

References

Acme (1998), http://www-2.cs.cmu.edu/~acme/.
Alter S, Ein-Dor P, Lynne Markus M, Scott J, Vessey I (2001), Does the Trend

Toward E-Business Call for Changes in The Fundamental Concepts of Infor-

mation Systems? A Debate. Communications of AIS, 5(10), April.

Ambler SW (2002), Agile Modeling – Effective Practices for Extreme Program-

ming and the Unified Process. Wiley, New York.

Amdahl GM, Blaauw GA, Brooks Jr FP (1964), Architecture of the IBM Sys-

tem/360, IBM Journal of Research and Development, 8(2):21–36.

Aquilani F, Balsamo S, Inverardi P (2001), Performance analysis at the software

architectural design level, Performance Evaluation, 45(2–3), July.

Baeten JCM, Weijland WP (1990), Process Algebra. Cambridge Tracts in Theo-

retical Computer Science 18. Cambridge University Press, Cambridge.

Basel II (2004), Basel II: International Convergence of Capital Measurement and
Capital Standards: a Revised Framework, Basel Committee Publications No.

107, June. http://www.bis.org/publ/bcbs107.htm.

Bass L, Clements P, Kazman R, (1998), Software Architecture in Practice. Ad-

dison-Wesley, Reading, Massachusetts.

Bayens G, Commandeur A (2004), De Architect als Econoom: ‘Kostenbewust

ontwerpen’, Landelijk Architectuur Congres (LAC2004), Nieuwegein, 30

November-1 December (in Dutch).

Bergstra JA, Ponse A, Smolka SA (eds.) (2001), Handbook of Process Algebra.

Elsevier, Amsterdam.

Biemans FPM, Lankhorst MM, Teeuw WB, Van de Wetering RG (2001), Dealing

with the Complexity of Business Systems Architecting. Systems Engineering,
4(2):118–133.

BiZZdesign (2004), http://www.bizzdesign.com.

Blanchard BS, Fabrycky WJ (1990), Systems Engineering and Analysis. Prentice

Hall, Englewood Cliffs, New Jersey.

Booch G, Rumbaugh J, Jacobson I (1999), The Unified Modeling Language User

Guide. Addison-Wesley, Reading, Massachusetts.

Bosch J, Grahn H (1998), Characterising the Performance of Three Architectural

Styles. Proc. First International Workshop on Software and Performance,

Santa Fe, New Mexico.

Brooks FP (1975), The Mythical Man-Month: Essays on Software Engineering.

Addison-Wesley, Reading, Massachusetts.

322 References

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996), A System of

Patterns: Pattern-Oriented Software Architecture. Wiley, New York.

Business Process Management Initiative (2003), Business Process Modeling No-

tation. Working Draft (1.0), Aug. http://www.bpmi.org.

Buuren R van, Jonkers H, Iacob, M-E, Strating P (2004), Composition of Rela-

tions in Enterprise Architecture Models. In Ehrig H et al. (eds.), Graph Trans-

formations, Proc. Second International Conference on Graph Transformation

(ICGT 2004), Rome, Italy, LNCS 3256, pp. 39–53. Springer, Berlin.
C4ISR Architecture Working Group (1997), C4ISR Architecture Framework Ver-

sion 2.0, US Department of Defense, December 18, 1997.

http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/pdfdocs/fw.pdf.

CIO Council (2004), Federal Enterprise Architecture Framework (FEAF),

http://www.cio.gov.

Clinger–Cohen Act (1996), Information Technology Management Reform Act,

August 8. http://wwwoirm.nih.gov/policy/itmra.html.

CMMI Product Team (2002), Capability Maturity Model Integration (CMMI),

Version 1.1, Staged Representation, CMU/SEI-2002-TR-029, ESC-TR-2002–

029, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania.

COBIT (2000), Control Objectives for Information and related Technology
(COBIT), 3rd Edition. IT Governance Institute, Rolling Meadows, Illinois.

http://www.isaca.org/cobit.htm.

Conway ME (1968), How do committees invent? Datamation, 14(4):28–31.

Creasy PN, Ellis G (1993), A Conceptual Graph Approach to Conceptual Schema

Integration. In Proc. ICCS’93, Conceptual Graphs for Knowledge Representa-

tion: First International Conference on Conceptual Structures, Quebec, Can-

ada.

Cruse DA (2000), Meaning in Language – An Introduction to Semantics and

Pragmatics. Oxford University Press, New York.

Dai Q, Kauffman R (eds.) (2002), B2B e-commerce revisited: revolution or evolu-

tion. Special section in Electronic Markets, 12(2).
Davenport T, Short JE (1990), The New Industrial Engineering: Information

Technology and Business Process Redesign, Sloan Management Review,

Summer: 309–330.

De Boer F, Bonsangue M, Jacob J, Stam A, Van der Torre L (2004), A Logical

Viewpoint on Architectures. Proc. 8th IEEE International Enterprise Distrib-

uted Object Computing Conference (EDOC’04), Monterey, California, Sep-

tember 20–24.

De Boer F, Bonsangue M, Jacob J, Stam A, Van der Torre L (2005), Enterprise

Architecture Analysis with XML. Proc. 38th Hawaii International Conference

on System Sciences (HICSS’05), Hawaii, January.

Di Marco A, Inverardi P (2004), Compositional Generation of Software Ar-
chitecture Performance QN Models. In Magee J, Szyperski C, and Bosch J,

(eds.), Proc. Fourth Working IEEE/IFIP Conference on Software Ar-

chitecture, pp. 37–46, Oslo, Norway.

References 323

Dijkstra EW (1968), Structure of the ‘THE’-Multiprogrammeming System, Com-

munications of the ACM, 11(5):341–346.

Eager D, Sevcik K (1986), Bound hierarchies for multiple-class queuing networks.

Journal of the ACM, 33:179–206.

Eertink H, Janssen W, Oude Luttighuis P, Teeuw W, Vissers C (1999), A Busi-

ness Process Design Language, Proc. 1st World Congress on Formal Methods,

Toulouse, France.

EFQM (2003), EFQM Excellence Model, EFQM Brussels Representative Office,
Brussels. http://www.efqm.org/model_awards/model/excellence_model.htm

Eriksson, H-E, Penker M (1998), Business Modeling with UML: Business Pat-

terns at Work. Wiley, New York.

Falkenberg ED, Hesse W, Lindgreen P, Nilsson BE, Oei JLH, Rolland C, Stamper

RK, Van Assche FJM, Verrijn-Stuart AA, Voss K (eds.) (1998), A Frame-

work of Information Systems Concepts, IFIP WG 8.1 Task Group FRISCO.

FEAPMO (2004), Federal Enterprise Architecture, http://www.feapmo.gov.

Ferris C, Farrell J (2003), What are Web Services? Communications of the ACM,

46(6):31.

Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992), View-

points: A Framework for Integrating Multiple Perspectives in System De-

velopment, International Journal of Software Engineering and Knowledge
Engineering, Special issue on Trends and Research Directions in Software

Engineering Environments, 2(1):31–58.

Fitzsimmons JA, Fitzsimmons MJ (2000), New Service Development: Creating

memorable experiences. Sage, Thousand Oaks, California.

Fowler M (2003), Who Needs an Architect? IEEE Software, July–August:2–4.

Fowler M, Scott K (1999), UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 2nd edition. Addison-Wesley, Springfield, Virginia.

Franckson M, Verhoef TF (eds.) (1999), Information Services Procurement Li-

brary. Ten Hagen & Stam, Den Haag.

Frankel DS (2003), Model Driven Architecture: Applying MDA to Enterprise

Computing. Wiley, New York.
Franken H, Bal R, Van den Berg H, Janssen W, De Vos H (2000), Architectural

Design Support for Business Process and Business Network Engineering. In-

ter-national Journal of Services Technology and Management, 1(1):1–14.

Gamma E, Helm R, Johnson R, Vlissides J (1995), Design Patterns: Elements of

Reusable Object-Oriented Software, 1st edition. Addison-Wesley, Reading,

Massachusetts.

Garrett GR (2004), Volkswagen of America’s Enterprise Architecture Story, Pres-

entation at the ACT/IAC Enterprise Architecture (EA) Best Practices Semi-

nar, July 23.

Gartner (2004), Gartner’s Research Note of 7 January 2004.

Goldstein SM, Johnston R, Duffy J, Rao J (2002), The Service Concept: The
Missing Link in Service Design Research? Journal of Operations Manage-

ment, 20(2):121–134.

Grice HP (1975), Logic and Conversation. In: Cole P, Morgan JL (eds.), Syntax

and Semantics III: Speech Acts. pp. 41–58. Academic Press, New York.

324 References

Hall AD (1962), A Methodology for Systems Engineering. Van Nostrand, Prince-

ton, New Jersey.

Hall AD (1969), Three-Dimensional Morphology of Systems Engineering. IEEE

Transactions on System Science and Cybernetics, SSC-5(2):156–160.

Hammer M (1990), Reengineering Work: Don't Automate, Obliterate, Harvard

Business Review, July–August:109–144.

Hardjono TW, Bakker RJM (2001), Management van processen: Identificeren,

besturen, beheersen en vernieuwen. Kluwer, Dordrecht (in Dutch).
Harel D, Pnueli A (1985), On the development of reactive systems. In Apt K,

(Ed.), Logics and Models of Concurrent Systems, pp. 477–498. NATO ASI

Series. Springer, Berlin.

Harel D, Rumpe B (2004), Meaningful Modeling: What’s the Semantics of ‘Se-

mantics’? IEEE Computer, October:64–72.

Harrison P, Patel N (1992), Performance Modelling of Communication Networks

and Computer Architectures. Addison-Wesley, Reading, Massachusetts.

Henderson JC, Venkatraman N (1993), Strategic alignment: leveraging informa-

tion technology for transforming operations, IBM Systems Journal, 32(1):4–

16.

Hermanns H, Herzog U, Katoen J-P (2002), Process Algebra for Performance

Evaluation, Theoretical Computer Science, 274(1–2):43–87.
Hoque F (2000), e-Enterprise: Business Models, Architecture, and Components.

Cambridge University Press, Cambridge.

Horton W (1991), Illustrating Computer Documentation, Wiley, New York.

Iacob M-E, Jonkers H (2004), Quantitative Analysis of Enterprise Architectures,

Proc. INTEROP-ESA 2005 Conference, 23–25 February, Geneva.

Iacob, M-E, Leeuwen D van (2004), View Visualisation for Enterprise Architec-

ture, Proc. 6th International Conference on Enterprise Information Systems

(ICEIS 2004), 14–17 April, Porto, Portugal.

IBM Corp. (1964), IBM System/360 Principles of Operation. IBM Systems Refer-

ence Library, File No. S360-01, Form A22-6821-0. Poughkeepsie, New York.

IDEF (1993), Integration Definition for Function Modeling (IDEF0) Draft, Fed-
eral Information Processing Standards Publication FIPSPUB 183. U.S. De-

partment of Commerce, Springfield, Virginia.

IEEE Computer Society (2000), IEEE Std 1471-2000: IEEE Recommended Prac-

tice for Architecture description of Software-Intensive Systems. IEEE, New

York.

IFIP-IFAC Task Force (1999), GERAM: Generalised Enterprise Reference Ar-

chitecture and Methodology, Version 1.6.3, March (Published also as Annex

to ISO WD15704). http://www.fe.up.pt/~jjpf/isf2000/v1_6_3.html.

Illeris S (1997), The Service Economy: A Geographical Approach, Wiley, New

York.

ISO (2000), Quality Management Systems – Requirements, ISO 9000:2000, Inter-
national Organization for Standardization, Geneva.

ITU (1995a), Open Distributed Processing – Reference Model – Part 2: Founda-

tions, ITU Recommendation X.902 | ISO/IEC 10746-2, International Tele-

communication Union, Geneva.

References 325

ITU (1995b), Open Distributed Processing – Reference Model – Part 3: Architec-

ture, ITU Recommendation X.903 | ISO/IEC 10746-3, International Tele-

communication Union, Geneva.

ITU (1996), Open Distributed Processing – Reference Model – Part 1: Overview,

ITU Recommendation X.901 | ISO/IEC 10746-1, International Telecommuni-

cation Union, Geneva.

ITU (1997) Open Distributed Processing – Reference Model – Part 4: Architec-

tural Semantics, ITU Recommendation X.904 | ISO/IEC 10746-4, Interna-
tional Telecommunication Union, Geneva.

Jacob J (2004), The RML tutorial, CWI, Amsterdam. http://homepages.cwi.nl/

~jacob/rml/

Jacobson I, Booch G, Rumbaugh J (1999), The Unified Software Development

Process. Addison-Wesley, Reading, Massachusetts.

Jagannathan R (1995), Data flow Models, In Zomaya EY (ed.), Parallel and Dis-

tributed Computing Handbook. McGraw-Hill, New York.

Janssen WPM, Steen MWA, Franken H (2003), Business Process Engineering

versus E-Business Engineering: a summary of case experiences. Proc. 36th

Hawaii International Conference on System Sciences (HICCS’03), IEEE

Computer Society Press, Silver Spring, Maryland.

Jonkers H, Boekhoudt P, Rougoor M, Wierstra E (1999), Completion Time and
Critical Path Analysis for the Optimisation of Business Process Models. In

Obaidat M, Nisanci A, Sadoun B (eds.), Proc. 1999 Summer Computer Simu-

lation Conference, pp. 222–229, Chicago, Illinois.

Jonkers H, De Boer F, Bonsangue M, Van Buuren R, Groenewegen L, Hoppen-

brouwers SJBA, Lankhorst MM, Proper HA, Stam A, Van der Torre L, Veld-

huijzen van Zanten G (2004a), Concepts for Architecture Description, Archi-

Mate 2.2.1, version 3.0, Telematica Instituut, Enschede.

Jonkers H, Lankhorst MM, Buuren R van, Hoppenbrouwers S, Bonsangue M, Van

der Torre L (2004b), Concepts for Modelling Enterprise Architectures, Inter-

national Journal of Cooperative Information Systems, special issue on Archi-

tecture in IT, Vol. 13, No. 3, Sept. 2004, pp. 257-287.
Jonkers H, Swelm M van (1999), Queuing Analysis to Support Distributed System

Design. Proc. 1999 Symposium on Performance Evaluation of Computer and

Telecommunication Systems, pp. 300–307, Chicago, Illinois.

Kalakote R, Robinson M (2001), e-Business 2.0. Addison-Wesley, Reading, Mas-

sachusetts.

Kaplan R, Norton D (1992), The Balanced Scorecard – Measures That Drive Per-

formance, Harvard Business Review, January–February:71–79.

Kazman R, Bass L, Abowd G, Webb M (1994), SAAM: A method for analyzing

the properties of software architectures. Proc. 16th International Conference

on Software Engineering, pp. 81–90, Sorento, Italy.

Koning H (2002), Guidelines Concerning Readability of IT-Architecture Dia-
grams version 1.0, May 17, 2002, http://www.cs.vu.nl/~henk/research/

via/guidelines-readability-020517b.doc.

Kotonya G, Sommerville I (1992), Viewpoints for Requirements Definition.

IEE/BCS Software Engineering Journal, 7(6):375–387.

326 References

Krogstie J, Lindland OI, Sindre G (1995), Defining Quality Aspects for Concep-

tual Models, In Falkenberg ED, Hesse W, Olive A (eds.), Information Sys-

tems Concepts: Towards a consolidation of views, Proc. IFIP international

working conference on information system concepts, pp. 216–231. Chapman

& Hall, London.

Kruchten P (1995), Architectural Blueprints – The ‘4+1’ View Model of Software

Architecture, IEEE Software, 12(6):42–50.

Kruchten P (2000), The Rational Unified Process: An Introduction, 2nd edition.
Addison- Wesley, Reading, Massachusetts.

Labovitz G, Rosansky V (1997), The Power of Alignment. Wiley, New York.

Lindland OI, Sindre G, Sølvberg A (1994), Understanding Quality in Conceptual

Modeling, IEEE Software, 11(2):42–49.

Lung, C-H, Jalnapurkar A, El-Rayess A (1998), Performance-oriented software

architecture analysis: An experience report. Proc. First International Work-

shop on Software and Performance, Santa Fe, New Mexico.

Martin, J (1982), Strategic Data-Planning Methodologies. Prentice Hall, Engle-

wood Cliffs, New Jersey.

Martin, J (1989), Information Engineering (3 vols.). Prentice Hall, Englewood

Cliffs, New Jersey.

Martin RC (2002), Agile Software Development Principles, Patterns, and Prac-
tices, Prentice Hall, Englewood Cliffs, New Jersey.

Mayer RJ, Menzel CP, Painter MK, deWitte PS, Blinn T, Perakath B (1995), In-

formation Integration for Concurrent Engineering (IICE), IDEF3 Process De-

scrition Capture Method Report, Interim Technical Report April 1992–

September 1995. Knowledge Based Systems, College Station, Texas.

McGovern J, Ambler SW, Stevens ME, Linn J, Sharan V, Elias KJ (2004), A

Practical Guide to Enterprise Architecture. Pearson Education, Upper Saddle

River, New Jersey.

Medvidovic N, Taylor RN (2000), A Classification and Comparison Framework

for Software Architecture Description Languages, IEEE Transactions on Soft-

ware Engineering, 26 (1):70–93.
Menzel C, Mayer RJ (1998), The IDEF Family of Languages. In Bernus P, Mer-

tins K, Schmidt G (eds.), Handbook on Architectures of Information Systems,

vol. 1 of International Handbooks on Information Systems, Chap. 10, pp.

209–241. Springer, Berlin.

Miller GA (1956), The Magical Number Seven, Plus or Minus Two: Some Limits

on Our Capacity for Processing Information. Psychological Review, 63:81–

97.

Nadler DA, Gerstein MS, Shaw RB, (1992), Organizational Architecture: Designs

for Changing Organizations. Jossey-Bass, San Francisco.

NASCIO (2003), NASCIO Enterprise Architecture Maturity Model Version 1.3,

National Association of State Chief Information Officers.
https://www.nascio.org/ hotIssues/EA/EAMM.pdf

Nonaka I, Takeuchi H (1991), The Knowledge-Creating Company. Harvard Busi-

ness Review, November–December:97–130.

References 327

Nuseibeh BA (1994), A Multi-Perspective Framework for Method Integration.

PhD thesis, Imperial College, University of London.

Object Management Group (2002), UML Profile for Enterprise Distributed Object

Computing Specification. http://www.omg.org/docs/ptc/03-09-05.pdf.

Object Management Group (2003a), Unified Modeling Language (UML) Specifi-

cation: Infrastructure, Version 2.0. http://www.omg.org/docs/ptc/03-09-

15.pdf.

Object Management Group (2003b), UML 2.0 Superstructure Specification.
http://www.omg.org/docs/ptc/03-08-02.pdf.

Object Management Group (2003c), XML Metadata Interchange (XMI), Version

2.0. http://www.omg.org/cgi-bin/doc?formal/03-05-02

Object Management Group Architecture Board (2001), Model Driven Architec-

ture (MDA), Miller J, Mukerji J (eds.), ormsc/2001-07-01, Object Manage-

ment Group. http://www.omg.org/docs/ormsc/01-07-01.pdf.

ODMG (2000), Using XML as an Object Interchange Format, Object Data Man-

agement Group. http://www.odmg.org/.

Olle TW, Hagelstein J, Macdonald IG, Rolland C, Sol HG, van Assche FJM Ver-

rijn-Stuart AA (1988), Information Systems Methodologies: A Framework for

Understanding. Addison-Wesley, Reading, Massachusetts.

Pahl G, Beitz W (1986), Konstruktionslehre. Handbuch für Studium und Praxis.
Springer, Berlin.

Parker MM, Benson RJ (1989), Enterprise-wide Information Management: State-

of-the-Art Strategic Planning, Journal of Information Systems Management,

6(3):14–23.

Paulk M, Curtis B, Chrissis M, Weber C (1993), Capability Maturity Model for

Software (Version 1.1), Technical Report CMU/SEI-93-TR-024, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Peirce CS (1969a), Volumes I and II – Principles of Philosophy and Elements of

Logic. Collected Papers of C.S. Peirce. Harvard University Press, Boston,

Massachusetts.

Peirce CS (1969b), Volumes III and IV – Exact Logic and The Simplest Mathe-
matics. Collected Papers of C.S. Peirce. Harvard University Press, Boston,

Massachusetts.

Peirce CS (1969c), Volumes V and VI – Pragmatism and Pragmaticism and Sci-

entific Metaphysics. Collected Papers of C.S. Peirce. Harvard University

Press, Boston, Massachusetts.

Peirce CS (1969d), Volumes VI and VIII – Science and Philosophy and Reviews,

Correspondence and Bibliography. Collected Papers of C.S. Peirce. Harvard

University Press, Boston, Massachusetts.

Proper HA (ed.) (2001), ISP for Large-Scale Migrations, Information Services

Procurement Library. Ten Hagen & Stam, Den Haag.

Proper HA (2004), Da Vinci – Architecture-Driven Information Systems Engi-
neering. Nijmegen Institute for Information and Computing Sciences, Univer-

sity of Nijmegen.

Putman JR (1991), Architecting with RM-ODP, Prentice Hall, Englewood Cliffs,

New Jersey.

328 References

Rechtin E, Maier MW (1997), The Art of Systems Architecting. CRC Press, Boca

Raton, Florida.

Reeves J, Marashi M, Budgen D (1995), A Software Design Framework or How

to Support Real Designers, IEE/BCS Software Engineering Journal,

10(4):141–155.

Rittgen P (2000), A Modelling Method for Developing Web-Based Applications.

Proc. International Conference IRMA 2000, Anchorage, Alaska, pp. 135–140.

Romani MB (2003), Using the Enterprise Architecture to Quantify the Benefits of
Information Technology Projects, IR204L2/March 2003. Logistics Man-

agement Institute, McLean, Virginia.

Roozenburg NFM, Eekels J (1995), Product Design: Fundamentals and Methods.

Wiley, New York.

Rueping A (2003), Agile Documentation: A Pattern Guide to Producing Light-

weight Documents for Software Projects. Wiley, New York.

Sarbanes–Oxley Act (2002), http://www.law.uc.edu/CCL/SOact/toc.html.

Scheer, A-W (1994), Business Process Engineering: Reference Models for Indus-

trial Enterprises, 2nd Edition. Springer, Berlin.

Schefstroem D, Van den Broek G (1993), Tool Integration: Environments and

Frameworks. Wiley, New York.

Schomig A, Rau H (1995), A Petri Net Approach for the Performance Analysis of
Business Processes. Technical Report 116, Lehrstuhl für Informatik III, Uni-

versitat Wurzburg.

Smith C (1990), Performance Engineering of Software Systems. Addison-Wesley,

Reading, Massachusetts.

Smith JM, Smith DCP (1977), Database Abstractions: Aggregation and Generali-

zation, ACM Transactions on Database Systems, 2:105–133.

Sowa JF, Zachman JA (1992), Extending and Formalizing the Framework for In-

formation Systems Architecture, IBM Systems Journal, 31(3):590–616.

Spitznagel B, Garlan D (1998), Architecture-based Performance Analysis. Proc.

1998 Conference on Software Engineering and Knowledge Engineering, San

Francisco Bay.
Stam A, Jacob J, De Boer F, Bonsangue M, Van der Torre L (2004), Using XML

transformations for Enterprise Architectures. Proc. 1st International Sympo-

sium on Leveraging Applications of Formal Methods (ISOLA'04), Paphos,

Cyprus.

Steen MWA, Doest HWL ter, Lankhorst MM, Akehurst DH (2004), Supporting

Viewpoint-Oriented Enterprise Architecture. Proc. 8th IEEE International En-

terprise Distributed Object Computing Conference (EDOC’04), Monterey,

California, September 20–24.

Steen MWA, Lankhorst MM, Wetering RG van de (2002), Modelling Networked

Enterprises, in Proc. Sixth International Enterprise Distributed Object Com-

puting Conference (EDOC’02), Lausanne, Switzerland, September, pp. 109–
119.

Stevens M (2002), Service-Oriented Architecture Introduction, Part 1.

www.developer.com/design/article.php/1010451, April.

References 329

Teeuw WB, Berg, H van den (1997), On the Quality of Conceptual Models. In

Liddle SW (ed.), Proc. ER’97 Workshop on Behavioral Models and Design

Transformations: Issues and Opportunities in Conceptual Modeling, UCLA,

Los Angeles. http://osm7.cs.byu.edu/ER97/workshop4/tvdb.html.

The Open Group (2002), The Open Group Architectural Framework (TOGAF)

Version 8 ‘Enterprise Edition’. The Open Group, Reading, UK.

http://www.opengroup.org/togaf/.

Treacy M, Wiersema, F (1997), The discipline of market leaders. Perseus Pub-
lishing, Reading, Massachusetts.

Turner KJ (1987), An Architectural Semantics for LOTOS. Proc. 7th International

Conf. on Protocol Specification, Testing, and Verification, pp. 15–28.

UN/CEFACT (2004), http://www.unece.org/cefact/.

US Treasury (2004), Treasury Enterprise Architecture, http://www.ustreas.gov/

teaf/.

Van Bon J (ed.) (2002), IT Service Management – An Introduction – Based on

ITIL. Van Haren Publishing, Zaltbommel.

Van der Sanden WAM, Sturm BJAM (1997), Informatiearchitectuur, de infra-

structurele benadering. Panfox, Rosmalen (in Dutch).

Van der Zee H, Laagland P, Hafkenscheid B (eds.) (2000), Architectuur als Man-

agement Instrument – Beheersing en Besturing van Complexiteit in het Net-
werktijdperk. Ten Hagen & Stam, Den Haag (in Dutch).

Van Eck PAT, Blanken H, Wieringa RJ (2004), Project GRAAL: Towards op-

erational architecture guidelines. International Journal of Cooperative Infor-

mation Systems, 13(3):235–255.

Van Leeuwen D, Doest HWL ter, Lankhorst MM (2004), A Tool Integration

Workbench for Enterprise Architecture. Proc. 6th International Conference on

Enterprise Information Systems (ICEIS 2004), Porto, Portugal, 14–17 April

2004.

Van Velzen RCG, Van Oosten JNA, Snijders T, Hardjono TW (2002), Proces-

management en de SqEME-benadering. Kluwer, Dordrecht.

Venkatraman N (1995), IT-enabled Business Transformation: From Automation
to Business Scope Redefinition, Sloan Management Review, Fall:32–42.

Veryard R (2004), Business-Driven SOA 2 – How business governs the SOA

process, CBDI Journal, June.

W3C (1999), XSL Transformations 1.0, World Wide Web Consortium.

http://www.w3.org/TR/xslt.

W3C (2000), XML 1.0, World Wide Web Consortium. http://www.w3.org/XML/.

W3C (2001), XML Schema 1.0, World Wide Web Consortium.

http://www.w3.org/XML/Schema.

Weill P, Vitale M (2002), What IT Infrastructure Capabilities Are Needed to Im-

plement E-Business Models? MIS Quarterly Executive, 1(1):17–34.

Weinberg GM (1988), Rethinking Systems Analysis & Design. Dorset House
Publishing, New York.

Wieringa RJ (1996), Requirements Engineering: Frameworks for Understanding.

Wiley, New York.

330 References

Wieringa RJ (1998a), Postmodern Software Design with NYAM: Not Yet An-

other Method. In Broy M, Rumpe B (eds.), Requirements Targeting Software

and Systems Engineering, LNCS 1526, pp. 69–94. Springer, Berlin.

Wieringa RJ (1998b), A Survey of Structured and Object-Oriented Software

Specification Methods and Techniques, ACM Computing Surveys,

30(4):459–527.

Wieringa RJ (2003), Design Methods for Reactive Systems: Yourdon, Statemate

and the UML. Morgan Kaufmann, San Francisco.
Wieringa RJ, Blanken HM, Fokkinga MM, Grefen PWPJ (2003), Aligning ap-

plication architecture to the business context. Proc. Conference on Advanced

Information System Engineering (CaiSE’03), LNCS 2681, pp. 209–225.

Springer, Berlin.

Wijers GM, Heijes H (1990), Automated Support of the Modelling Process: A

view based on experiments with expert information engineers. In Steinholtz

B, Sølvberg A, Bergman L (eds.), Proc. Second Nordic Conference on Ad-

vanced Information Systems Engineering (CaiSE’90), LNCS 436, pp. 88–108.

Springer, Berlin.

Williams LG, Smith CU (1998), Performance Evaluation of Software Architec-

tures. Proc. First International Workshop on Software and Performance, Santa

Fe, New Mexico, October, pp. 164–177.
Wood-Harper AT, Antill L, Avison DE (1985), Information Systems Definition:

The Multiview Approach. Blackwell Scientific, Oxford, UK.

Woods WA, Schmolze JG (1992), The KL-ONE family, Computers & Mathe-

matics with Applications, 23(2/5):133–177.

Zachman JA (1987), A Framework for Information Systems Architecture, IBM

Systems Journal, 26(3):276–292.

Index

ABN AMRO, 288
ABP, 277

abstraction, 130

abstraction level, 72, 131
access relation, 106

Acme, 41

activity

business, 93
activity diagrams, 38

actor

business, 91
ADL, 40

aggregation relation, 106

alignment, 6, 49

analysis
functional, 192, 209

impact-of-change, 222, 269

performance, 196
quantitative, 194, 273

architectural description, 67

architecture, 2
enterprise, 3

service-oriented, 42

Architecture Description

Language, 40
ARIS, 36

ARIS Toolset, 36

artifact, 103
assignment relation, 106

association relation, 106

balanced scorecard, 12
Basel II framework, 9

BCF. See Business Collaboration

Framework

behaviour
business, 93

BPEL4WS, 34

BPML, 34
BPMN, 34

Business Collaboration

Framework, 20

business process design, 251
business process management,

251

C4ISR, 29
Capability Maturity Model, 18

CIM. See Computation-

Independent Model

class diagrams, 38
Clinger–Cohen Act, 9

CMM, 18

CMMI, 18
COBIT, 16

coherence, 83

collaboration, 89
application, 99

business, 92

collaboration diagrams, 38

colour, 144
communication path, 103

component

application, 99
component diagrams, 38

composition relation, 106

compositionality, 48
Computation-Independent

Model, 28

conceptual integrity, 115

332 Index

concern, 53, 70

contract, 97

data flow networks, 219
deployment diagrams, 38

device, 102

DoDAF, 29
domain, 54

economy, 115

EDOC, 39

EFQM, 13
enterprise, 3

Enterprise Distributed Object

Computing, 39
event

business, 95

execution environment, 102
FEAF, 21

Federal Enterprise Architecture

Framework, 21

flow relation, 107, 108
frameworks, 20

function

application, 100
business, 94

functional analysis. See analysis,

functional
generality, 115

GERAM, 30

Grice’s Maxims, 125

grid, 44
grouping relation, 106

IDEF, 32

IDEF0, 32
IDEF1X, 32

IDEF3, 32

IEEE 1471 Standard, 22

impact-of-change analysis. See
analysis, impact-of-change

interaction, 89

application, 100
business, 95

interface, 89

application, 99

business, 92

infrastructure, 102
provided, 99

required, 99

ISO 9001, 15
ITIL, 17

junction, 108

landscape map, 266

layering, 133
layout, 141

MDA, 27

meaning, 98
Meta Object Facility, 27, 29

model, 52, 54

semantic, 59, 63
symbolic, 59, 61

Model-Driven Architecture, 27

modelling, 54

guidelines, 125
way of, 118

model–view–controller. See

model–view–controller
architecture

model–view–controller

architecture, 269
MOF. See Meta Object Facility

nesting, 106

network, 103

node, 102
Nolan Norton Framework, 31

object, 89

business, 92
data, 99

Object Constraint Language, 39

object diagrams, 38

OGSI, 44
orthogonality, 115

parsimony, 115

performance analysis. See
analysis, performance

perspective, 71

Index 333

PIM. See Platform-Independent

Model

Platform-Independent Model, 28
Platform-Specific Model, 28

process

business, 89, 94
process algebra, 217

product, 96

profile

UML, 39
propriety, 116

PSM. See Platform-Specific

Model
quality

external, 116

internal, 116
quantitative analysis. See

analysis, quantitative

Queries, Views, and

Transformations, 29
QVT. See Queries, Views, and

Transformations

Rational Unified Process, 20
readability of models, 138

realisation relation, 106

Reference Model for Open
Distributed Processing, 30,

151

relation concepts, 105

repository, 251
representation, 92

RM-ODP, 30. See Reference

Model for Open Distributed
Processing

role, 89

business, 91

RUP. See Rational Unified
Process

Sarbanes-Oxley Act, 9

scope, 71
semantics, 58

architectural, 60

formal, 60

sequence diagrams, 38

service, 51, 85, 89
application, 100

business, 93

service orientation, 42, 85
services

infrastructure, 103

signature, 62, 209, 215

simulation, 192
stakeholder, 2, 53, 149

state diagrams, 38

stereotype
UML, 39

structuring, 131

system development community,
70

system software, 102

tagged value

UML, 39
task, 93

Tax and Customs

Administration, 299
Testbed, 35

The Open Group Architectural

Framework, 25
TOGAF, 25

TOGAF Architecture

Development Method, 20

triggering relation, 107, 108
UML. See Unified Modeling

Language

UMM, 20
UN/CEFACT Modelling

Methodology, 20

Unified Modeling Language, 27,

37
usability of models, 138

use case diagrams, 38

used by relation, 106
UWV, 300

value, 97

334 Index

view, 55, 148

view model

4+1, 150. See 4+1 view model
viewpoint, 55, 148, 150

RM-ODP, 151

viewpoint frameworks, 150

visualisation

interactive, 264
Zachman framework, 24

	cover-image-large.jpg
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf

